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Executive Summary 
The Materials Genome Initiative’s Interagency Working Group on Autonomous Materials Innovation 
Infrastructure (AMII-IWG) held a workshop hosted by the National Science Foundation Division of 
Materials Research on June 10-11, 2024 to develop a baseline of current capabilities and gaps in the 
United States (U.S.) Autonomous Materials Innovation Infrastructure (AMII). The AMII includes 
Autonomous Experimentation (AE), a revolutionary new way of doing research which accelerates 
advances and multiplies researcher eƯort in materials research and development (R&D) by 
exploiting advances in artificial intelligence (AI), autonomous systems, and automation. 

Advances in materials are key to realizing significant improvements in diverse areas such as human 
health and welfare, energy and environment, global economic competition, and national security. AE 
has the potential to significantly benefit these national priorities by accelerating the insertion of new 
materials from decades to years. 

Overall, AE is at an early stage of development, with key demonstrations of accelerated research and 
productivity. The first workshop breakout session focused on the landscape of the current AMII, 
identifying important existing resources by materials class. Summaries of the resources identified, 
and the corresponding breakout conversations are provided for each materials class within this 
report. A full list of resources identified, including in the pre-meeting information gathering process, 
is provided in the Appendices. 

The afternoon breakout sessions focused on gaps in the current infrastructure. There were several 
common themes for gaps in the AMII across the breakout sessions and panel discussions. Foremost, 
the workshop participants saw a clear need for significant development of infrastructures for 
autonomous experimentation for materials R&D. Automation in experimental hardware was 
identified as needing development for materials synthesis, characterization, testing and sample 
exchange. Additionally, new AI decision methods for materials research are needed, along with 
standardized data structures and representations, as well as better sharing and reproduction of data 
and results. Finally, workforce development was uniformly identified as a critical gap for AI-Driven AE 
materials research. 

Finally, the workshop participants emphasized the importance of strong industry, university, 
government collaboration and suggested potential public/private partnerships or consortia to 
advance the U.S. Autonomous Materials Innovation Infrastructure in the United States. 

Introduction and Motivation 

Purpose of the Workshop 
Materials are ubiquitous and pervasive. They form the critical building blocks that technology and 
innovation rely upon, and their development and deployments unleash new capabilities and fuel 
economic growth. Advanced materials are key elements for the entire range of innovation demands, 
from solving societal challenges to developing national security related capabilities. The Nation’s 
ability to develop and deploy advanced materials rapidly and cost-eƯectively is a key component to 
advancing U.S. competitiveness and national security. The materials development and innovation 



 

7 
 

enterprise is often rooted in and springs from fundamental materials research, i.e., materials 
research that, initially, may not necessarily target a specific device or application, but is also fueled 
by application-driven needs. The materials enterprise spans the entire technology development 
pathway from fundamental research through scale up and commercialization. The agencies 
participating in the Materials Genome Initiative (MGI) use their respective roles and responsibilities 
to span this entire spectrum to accelerate materials design through deployment. The United States 
is home to a robust industrial market investing in translating fundamental to applied research either 
in-house, or by leveraging federally funded research advancements to increase their national and 
global competitiveness. 

The rapid emergence of digital tools, ranging from artificial intelligence/machine learning (AI/ML), 
and other data analytics methods, coupled to robotics and automation, can yield AE workflows. AE 
holds tremendous potential to revolutionize materials R&D. Federal agencies and private enterprises 
have been investing in developing the necessary infrastructure to accelerate this process - the 
Materials Innovation Infrastructure (MII) as outlined in the 2021 MGI Strategic Plan. Over the course 
of the last several years, there has been an increase in the number of workshops, conferences, and 
other activities related to these emerging techniques. A small subset of these activities is outlined in 
the figure below (not an exhaustive list.)  

 

 

The Accelerating Materials Solutions to Meet National and Global Challenges Workshop was 
organized to complement these workshops with a focus on understanding the current U.S. 
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landscape of capabilities. Over 80 participants representing academia, industry, and 16 federal 
agencies, identified more than 500 activities ranging from small groups to broad multi-organization 
initiatives. Activities spanned all types of materials and tools throughout the material development 
and maturation process. 

Organized by the Autonomous Materials Innovation Infrastructure Interagency Working Group (AMII-
IWG) of the Material Genome Initiative (MGI), this workshop aimed to catalog existing eƯorts, 
primarily in the United States, to provide a baseline for follow-on MGI eƯorts—both among the 
participating agencies and in collaboration with the private sector. The outputs of this workshop can 
be leveraged to assess the progress of MGI activities to create an interoperable MII, for critical gap 
analyses and road mapping to focus the eƯorts of agency, interagency, and public-private 
partnerships, and for additional landscape surveys to identify additional opportunities for 
collaborative eƯorts. 

Overview of MGI and the MII 
The Materials Genome Initiative (MGI) was launched in 2011 with the recognition that there were 
profound advances in materials R&D that were being enabled by the tight integration of experiment, 
computation, and data that comprise the “Materials Innovation Infrastructure” or MII. While there 
were demonstrated successes that inspired the MGI, they were isolated, and barriers to widespread 
application of these approaches were substantial. The MII had the potential to dramatically 
accelerate the discovery, design, development, and deployment of new materials into manufactured 
products, with consequent impacts on the diverse areas where materials innovation is often the 
crucial technology needed for progress. Clean energy, improved human health, enhanced national 
security, and any number of critical emerging technologies could all be made more accessible by 
application of MGI principles.  

At its founding, a significant motivator for the MGI was the recognition that computational methods 
and hardware had progressed to the point where modeling could and should be viewed as an equal 
partner in the materials R&D enterprise. Capitalizing on these advances required the R&D 
community to embrace materials simulation as a first-class research product, and to more tightly 
integrate such simulations into materials research. Thus, the early days of the MGI were dominated 
by discussions on how to best realize proven (but not-widely adopted) approaches like integrated 
computational materials engineering (ICME) and similar paradigms for accelerating materials R&D. 

In tandem with this focus on computation was an acknowledgement that integration of computation 
and experiment would require a significant focus on data. Whether the data came from experiment 
or computation, the flows of the data were the underlying raw material of the MII.  Thus, while the 
ultimate goal of the MGI is the synthesis of new materials for deployment into manufactured goods, 
the data was the means to this end. This focus on data infrastructures was quite new to materials 
R&D, requiring significant changes in incentives for the research community, including the need to 
protect intellectual property and export-controlled information.  

The focus on data implied an exciting possibility, namely the advent of ubiquitous "data-driven" 
materials R&D. This was first suggested in the context of the MGI very near its inception and is called 
out in the 2014 MGI strategic plan. This recognition presaged the imminent rise of machine 
learning/artificial intelligence that has captured the public imagination and, perhaps more 
importantly, risen to significant prominence in the materials R&D endeavor. 
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The advent of AI approaches to materials R&D is enormously promising, with the potential to both 
provide models of materials systems where no models were currently available, and also to 
massively accelerate modeling where physics/chemistry models are well understood. However, to 
achieve this end, there is a need for far more data than is currently available, although databases of 
computed data were an excellent beginning to resolving this conundrum. What is now needed is a 
way to substantially lower the cost for experiments while accelerating the rate of such experiments. 
Thus, the MGI has turned its focus to experiment. The development of autonomous experimentation 
(AE) methodologies (the autonomous materials innovation infrastructure or AMII) is the key to 
unlocking the door to vast troves of materials data, rapidly designing new materials with fit-for-
purpose properties, and thereby realizing many of the goals of the MGI.  

Accelerated Materials R&D Enabled by Autonomous Experimentation 
Autonomous experimentation (AE) is the coupling of automated experimentation and in situ or in-
line analysis of results, with artificial intelligence (AI) to direct experiments in rapid, closed-loops to 
speed the research process. AE is enabled by several technological advances coupled to existing 
techniques that need to be integrated into the AMII. The basic elements are 

1. Rapid/automatic characterization enabled by AI-trained pattern recognition 
2. Based on the results of characterization, decision algorithms (like Bayesian optimization) 

enable tradeoƯs between exploration and goal-seeking behavior in the search for desired 
performance characteristics, and 

3.  Automation, enabling robots to carry out the experimental tasks prescribed by the decision 
algorithms. 

These steps can be carried out in a closed loop, yielding AE workflows.  What follows below is a more 
detailed look at the elements of AE, and some of the supporting infrastructures. 

High-throughput screening methods allow rapid and parallel testing of large numbers of 
materials or synthesis methods to identify best-fit-for-purpose for an R&D goal.   

Computational models employ physics and chemistry knowledge to provide predictions on the 
relationships between materials composition, internal structure (microstructure), properties 
and performance. Incorporating the knowledge embedded in such models into AE workflows can 
accelerate the R&D process by reducing the search to only include regions mandated by the laws 
of nature. The best methods to join computational modeling and simulation with AE is an active 
area of research. 

Artificial intelligence is defined in 15 U.S.C. 9401(3) as a machine-based system that can, for a 
given set of human-defined objectives, make predictions, recommendations, or decisions 
influencing real or virtual environments, and machine learning (ML) is a subset of AI associated 
with algorithms that enable systems to identify patterns and make decisions, and, importantly, 
to learn through the acquisition of more data.  It is not uncommon for practitioners in materials 
R&D to use the terms AI and ML interchangeably. 

Automation is a key element of AE, enabling robots and other machines to do repetitive tasks 
that would otherwise be performed by human researchers. 
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Autonomy is the delegation of decision authority to act by a higher-level authority (i.e., human 
researcher) to a delegee (i.e., the AE system). This authority to act is bounded and revokable and 
does not absolve the human researcher of responsibility for actions by the delegee. 

Characterization is a broad term that captures methods for determining what material has been 
made, including its compositional makeup (which likely varies from point-to-point) and the 
internal structures and interfaces at a range of scales from nanometers to macroscale.  ML 
techniques have dramatically improved R&D practitioners’ ability to rapidly identify patterns, 
enabling accelerated characterization. 

FAIR is an acronym for findable, accessible, interoperable, and reusable data.  It is a useful suite 
of concepts for determining whether a data resource and the workflows of an R&D operation have 
been optimized to reduce the friction in their use of data, and to allow collaborators to make 
maximum use of other data.  Data is housed in data repositories, which can be assessed against 
the FAIR rubric to see if it meets the demands of the R&D community. 

Benefits of Accelerated Materials Experimentation 
Continued investment in the next generation of scientific infrastructure is needed for the United 
States to maintain its leadership position in scientific innovation. Strategic leadership is not 
conferred solely through new infrastructure, but through the new paradigms of scientific discovery 
that come with technological advances and the community that forms around this infrastructure. 
AMII combines a number of technological advances: incredible advances in AI, aƯordable, 
suƯiciently reliable robotics, and advances in characterization and high throughput synthesis. The 
synthesis of these technological shifts helps realize new paradigms of scientific discovery and 
enables greater speed and eƯectiveness of scientific exploration, reduces cost and human eƯort in 
experimentation, accelerates the innovation to manufacturing pipeline, and democratizes science 
for researchers. This transformative set of technologies, integrated together as AMII, serves to 
continue advancing the development of materials innovation as a core strategic advantage and 
national capability for the U.S. 

One of the key benefits of realizing AMII is greatly increasing the pace at which scientific experiments 
are executed. Autonomous experimentation allows for asynchronous workload scheduling and 
continuous experimental campaigns, rather than being limited by human working hours or other 
constraints. The increase in speed of scientific experimentation not only allows more experiments to 
be performed but shifts from a paradigm of probing the frontier of materials through individual 
experiments to enabling comprehensive mapping of the materials frontier. Increasing the speed of 
scientific experimentation does not just linearly increase the number of experiments but 
fundamentally shifts how scientific exploration is enabled through prioritized and automated 
experimentation. 

AMII can also deliver enhanced eƯectiveness of discovery at reduced fiscal and labor cost. AMII 
amplifies human eƯort and agency by reducing menial, repetitive tasks which can burn out early 
career researchers in the lab today. Instead, AMII enables more seamless manifestation of human-
generated scientific ideas through autonomously generated experimental results, while improving 
labor productivity of the materials development and innovation enterprise, reducing the cost of 
scientific experimental campaigns, and magnifying the impact of research funding. 
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Traditionally, scientific discoveries of new materials take over a decade to scale to 
commercialization, even in successful cases. Developing AMII can shrink the valley of death from 
translating laboratory research into commercialized technology as automation brings the lab one 
step closer to the manufacturing line.  Incorporating automation equipment and robotics improves 
reproducibility and ensures that the experimental synthesis pathways being explored are already 
automation-ready to scale towards manufacturing. Developing AMII can help the United States 
translate its historical strategic advantage in basic discoveries into domestic, commercial 
applications and internationally competitive industries. 

Similar to how cloud computing democratized access to computing infrastructure, AMII is capable 
of democratizing and broadening researcher access to unified MII platforms, independent of 
location. Digital twins and cloud-based laboratory operations allow researchers across the country 
to remotely schedule workloads and view experimental campaign results in real time. Integrating 
existing characterization and synthesis equipment into AMII can improve the equipment utilization 
rate, for example by allowing instrumentation to run autonomously 24/7 without human intervention. 
Continuous operation not only lowers capital cost for facilities but also enables more users to 
leverage existing user facilities and improves researcher access to equipment and facilities that may 
otherwise be at capacity.  

Workshop Description 
What follows below is a description of the workshop, as well as a discussion of the analysis 
performed to develop the graphical representations of the outputs of the landscape exercises 
(detailed agenda found in Appendix A). The workshop was attended by over 80 participants across 
academia, industry, and government (see attendee list in Appendix B) and was split into four 
components: two panel discussions and two breakout discussion sessions. 

 

Panel 1: The Autonomous Materials Innovation Infrastructure (AMII) and 
Global Challenges 

The first panel on “The AMII and Global Challenges” was moderated Jim Warren (NIST) and included 
panel members Jae Hattrick Simpers (University of Toronto), Milad Abolhasani (NCSU), Rob Moore 
(ORNL), Shijing Sun (University of Washington), Javier Read de Alaniz (BioPACIFIC MIP), and 
Theresa Mayer (CMU). This panel focused on the following discussion points: 

Discussion Points 

 Scientific challenges that are ripe for the application of the AMII  
 Status of developed infrastructures to meet demands/requirements of identified challenges 
 Areas/capabilities/mechanisms that are under-resourced, reasons for under-resourcing, 

and potential solutions to address this 
 Potential immediate stakeholders and possible engagement models 
 Ideal ways for the MGI community to collaborate and coordinate as a part of the publicly 

supported autonomous experimentation (AE) community  
 Opportunities to keep the momentum going at the Federal level 
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During the panel, several key scientific challenges emerged as ripe for the application of the AMII. 
The convergence of the data age with the industry age presents both opportunities and challenges in 
terms of enabling infrastructure. Bridging the gap between these realms is essential for accelerating 
scientific progress. To achieve progress, there is a need for autonomous instrumentation / 
experimentation capable of generalizing to novel datasets and ensuring interoperability across 
diƯerent systems. This interoperability would not only multiply the eƯectiveness of researchers and 
speed up discoveries, but also enable access to reliable and high-quality data. Participants 
emphasized the need for knowledge-sharing and discussed the specific hardware required for 
discovery. Participants also highlighted the importance of robust data management and how better 
understanding capabilities can help build eƯective bridges between fields. A critical aspect 
discussed was the importance of not relying on big data abstractly but focusing on the specific data 
representations of materials in fundamental workflows, and autonomously acquiring the most 
valuable data. 

Reflecting on the current status of the AMII, the discussion noted the significant excitement and 
successes already achieved. Investments in robotics and materials have led to the creation of 
numerous autonomous laboratories, embracing the automation of science and moving towards its 
democratization. However, it was acknowledged that more needs to be done, particularly in choosing 
specific areas to delve deeper and developing infrastructure sharing to accelerate progress. The 
importance of cross-disciplinary eƯorts and workforce training was emphasized. Participants called 
for the democratization of knowledge, drawing parallels with the development of cloud-computing 
democratizing access to software, requiring both better access to experimental instruments and to 
others’ data. The participants advocated for building new communication channels between 
universities, national labs, and industry. Additionally, restructuring data to achieve vertical 
integration was identified as a crucial need in the future. 

The discussion also explored why certain areas are under-resourced. Key points included the 
necessity of ensuring investments in security from the outset and addressing the lack of training in 
building, operating, and maintaining autonomous labs in the United States. Participants stressed the 
importance of starting conversations now to address these gaps. While many tools have been 
developed independently, there is a need to connect them and enhance data management through 
more eƯective coordination of eƯorts. Collectively defining incentives and identifying a form of 
rewards programs was suggested as a potential solution to encourage participation and investment 
in these areas. The panel highlighted the need for a concerted eƯort to ensure that the necessary 
resources, training, and infrastructure are in place to support the burgeoning field of autonomous 
experimentation. 

 

Working Session 1: Inventory of the Existing National Autonomous 
Materials Innovation Infrastructure (AMII) 

To achieve the goals of the workshop, the MGI AMII-IWG identified 10 breakout groups to represent 
the materials domains: Structural Metals, Structural Ceramics, Structural Soft Matter, Structural 
Composites, and Structural “Other”, as well as Functional Metals, Functional Ceramics, Functional 
Soft Matter, Functional Semiconductors, and Functional “Other”.  
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It was recognized that these bins are not perfect representations of the entire materials universe, but 
organizers decided these categories would be adequate to cover a large proportion of materials 
research (with the “Other” categories provided to help capture additional important infrastructures). 
Participants were asked to self-select between the 8 categories (excluding other) during the 
registration process, and two breakout leads were recruited to facilitate and capture the discussions. 
Given preferences of participants, teams were assigned to the following 7 topics, as there were not 
enough participants selecting Structural Composites. Both groups Functional Ceramics and 
Functional semiconductors garnered enough interest to necessitate splitting into two parallel but 
collaborative groups: 

 

Structural Metals Functional Metals 
Structural Ceramics Functional Ceramics A 
 Functional Ceramics B 
Structural Soft Matter Functional Soft Matter 
 Functional Semiconductors A 
 Functional Semiconductors B 

 

Additionally, the materials development continuum was divided into 6 broad segments: Discovery & 
Experimental Design, Synthesis, Characterization, Scale-Up/Manufacturing, 
Certification/Qualification, and Recycling/End-of-Use. Each existing infrastructure or capability was 
assigned to one (or multiple) segments, and further categorized by the following topics within each 
segment: Models, Data and Information Handling, Autonomous Instrumentation, Software, Sample 
Handling / HandoƯ, and Decision Tools with the following broad definitions: 

A. Models: In the realm of materials development, models refer to mathematical or computational 
representations of physical processes, properties, or phenomena. These models can range from 
simple empirical equations to complex simulations based on fundamental principles of physics 
and chemistry. They are used to predict material behavior under various conditions, optimize 
material properties, and guide experimental design. 

B. Data & Information Handling: This category involves the collection, storage, organization, and 
analysis of data and information related to materials development. With the advent of high-
throughput experimentation and advanced characterization techniques, large amounts of data 
are generated at every stage of the materials development process. EƯective data handling 
involves ensuring data integrity, accessibility, and security, as well as employing techniques such 
as data mining and machine learning to extract meaningful insights from the data. 

C. Autonomous Instrumentation: Autonomous instrumentation refers to the use of automated or 
self-regulating instruments and systems in materials R&D. These instruments can perform tasks 
such as synthesis, characterization, and testing with minimal human intervention. Examples 
include robotic sample handling systems, automated microscopy platforms, and self-calibrating 
sensors. Autonomous instrumentation accelerates the pace of materials discovery by enabling 
high-throughput experimentation and continuous operation. 

D. Software: In materials development, software plays a crucial role in facilitating data analysis, 
modeling, simulation, and experimental control. This includes both commercial software 
packages tailored for specific tasks (such as finite element analysis or molecular dynamics 
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simulations) and custom-developed software tools designed to address the unique challenges 
of materials research. Software enables researchers to visualize complex data, simulate 
material behavior, and optimize experimental parameters, ultimately accelerating the 
development of new materials and processes. 

E. Sample Handling/HandoƯ: Sample handling refers to the processes involved in preparing, 
transporting, and transferring material samples within the materials development workflow. This 
includes tasks such as sample synthesis, preparation for characterization, and distribution to 
diƯerent research groups or facilities. EƯicient sample handling is essential for ensuring 
reproducibility, minimizing contamination, and maximizing the throughput of experiments. 

F. Decision Tools: Decision tools encompass a variety of techniques and methodologies used to 
support decision-making throughout the materials development process. These techniques 
include methods for experimental design, optimization, risk assessment, and resource 
allocation. Decision tools may range from simple heuristic guidelines to sophisticated 
algorithms based on statistical analysis and optimization theory. By providing quantitative 
insights into the trade-oƯs and uncertainties associated with diƯerent options, decision tools 
help researchers make informed decisions and prioritize their eƯorts eƯectively. 

In Breakout Session 1, the individual groups were asked to identify current capabilities across the 
entire materials development continuum for each of the 9 groups. For example, in Structural: Metals, 
participants were asked to discuss, identify, and fill in existing capabilities on the following graphic 
via sticky notes that capture relevant information on hard-backed posters at their table: 

 

In the individual cells, participants were asked to populate information that they considered relevant, 
including but not limited to: 

Name of project or platform with associated URL for more information 

Materials Class: Identify the specific types of materials or materials systems the instrumentation is 
designed to analyze or test.  

Level of Autonomy: Determine the degree to which the instrumentation operates autonomously. The 
level of autonomy could range from manual operation by researchers to fully automated systems 
controlled by algorithms or AI. 

Funding Source: List where the funding for the instrumentation came from. Sources could be 
government grants, private investments, institutional funds, etc. 

User Access Model: Define how researchers access and utilize the instrumentation. The access 
model could involve scheduling systems, user permissions, and training requirements. 
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Collaborative Opportunities: Identify any opportunities for collaboration or shared use of the 
instrumentation with other research groups or institutions. 

Performance Metrics: Assess the performance metrics of the instrumentation, such as accuracy, 
precision, throughput, and sensitivity. 

Maintenance Requirements / Sustainment Models: Share the maintenance and sustainment 
plans for the infrastructure and identify the long-term opportunities. 

 Data Output and Analysis Tools: Explore the types of data outputs generated by the 
instrumentation and the tools available for data analysis. Tools could include software packages, 
data visualization tools, and computational resources. 

At the conclusion of the breakout session, breakout leads were asked to transfer sticky notes to a 
very large-scale printout of the landscape as seen in the graphics below which was split between 
structural and functional materials. 
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Subsequently, all participants were asked to gather first at the structural poster then at the functional 
poster and breakout leads reported out to the entire workshop group. Participants were encouraged 
to ask questions and contribute additional capabilities. 

 

Panel 2: Building a Community to Realize the Autonomous Materials 
Innovation Infrastructure (AMII) – An Industry Perspective 

The second panel was titled “Building a Community to Realize the AMII – An Industry Perspective” 
and was moderated by Benji Maruyama (AFRL). Here, Richard Gottscho (LAM), Tim Erdmann (IBM), 
Carol Handwerker (CHIPS Program OƯice), John Lockemeyer (Shell Global Solutions US), and 
Michael Glavicic (Rolls-Royce) discussed the following points:  

Discussion Points 

 Industry's needs from the larger community for best engagement 
 Modes or paths for industry engagement with community 
 Company requirements to enable robust interactions and partnerships 
 Mechanisms and incentives needed to "sell" the investment to industry leadership 

 
The panel highlighted the indispensable role of industry in realizing the full potential of the AMII. 
Participants underscored that robust industry involvement is crucial not only for capital investment 
but also for workforce development and providing the unique tools necessary for realizing the 

M
od

el
s

D
at

a 
&

 In
fo

rm
at

io
n 

H
an

dl
in

g

Au
to

no
m

ou
s 

In
st

ru
m

en
ta

ti
on

So
ft

w
ar

e

Sa
m

pl
e 

H
an

dl
in

g 
/ 

H
an

do
ff

D
ec

is
io

n 
To

ol
s

M
od

el
s

D
at

a 
&

 In
fo

rm
at

io
n 

H
an

dl
in

g

Au
to

no
m

ou
s 

In
st

ru
m

en
ta

ti
on

So
ft

w
ar

e

Sa
m

pl
e 

H
an

dl
in

g 
/ 

H
an

do
ff

D
ec

is
io

n 
To

ol
s

M
od

el
s

D
at

a 
&

 In
fo

rm
at

io
n 

H
an

dl
in

g

Au
to

no
m

ou
s 

In
st

ru
m

en
ta

ti
on

So
ft

w
ar

e

Sa
m

pl
e 

H
an

dl
in

g 
/ 

H
an

do
ff

D
ec

is
io

n 
To

ol
s

M
od

el
s

D
at

a 
&

 In
fo

rm
at

io
n 

H
an

dl
in

g

Au
to

no
m

ou
s 

In
st

ru
m

en
ta

ti
on

So
ft

w
ar

e

Sa
m

pl
e 

H
an

dl
in

g 
/ 

H
an

do
ff

D
ec

is
io

n 
To

ol
s

M
od

el
s

D
at

a 
&

 In
fo

rm
at

io
n 

H
an

dl
in

g

Au
to

no
m

ou
s 

In
st

ru
m

en
ta

ti
on

So
ft

w
ar

e

Sa
m

pl
e 

H
an

dl
in

g 
/ 

H
an

do
ff

D
ec

is
io

n 
To

ol
s

M
od

el
s

D
at

a 
&

 In
fo

rm
at

io
n 

H
an

dl
in

g

Au
to

no
m

ou
s 

In
st

ru
m

en
ta

ti
on

So
ft

w
ar

e

Sa
m

pl
e 

H
an

dl
in

g 
/ 

H
an

do
ff

D
ec

is
io

n 
To

ol
s

Discovery & Experimental 
Design

Synthesis Characterization Scale-Up / Manufacturing Certification / Qualification Recycling / End-of-Use

1A 1B 1C 1D 1E 1F 1G 1H 1I 1J 1K 1L 1M 1N 1O 1P 1Q 1R 1S 1T 1U 1V 1W 1X 1Y 1Z 1AA 1BB 1CC 1DD 1EE 1FF 1GG 1HH 1II 1JJ

2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K 2L 2M 2N 2O 2P 2Q 2R 2S 2T 2U 2V 2W 2X 2Y 2Z 2AA 2BB 2CC 2DD 2EE 2FF 2GG 2HH 2II 2JJ

3A 3B 3C 3D 3E 3F 3G 3H 3I 3J 3K 3L 3M 3N 3O 3P 3Q 3R 3S 3T 3U 3V 3W 3X 3Y 3Z 3AA 3BB 3CC 3DD 3EE 3FF 3GG 3HH 3II 3JJ

4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 4O 4P 4Q 4R 4S 4T 4U 4V 4W 4X 4Y 4Z 4AA 4BB 4CC 4DD 4EE 4FF 4GG 4HH 4II 4JJ

M
etals

5A 5B 5C 5D 5E 5F 5G 5H 5I 5J 5K 5L 5M 5N 5O 5P 5Q 5R 5S 5T 5U 5V 5W 5X 5Y 5Z 5AA 5BB 5CC 5DD 5EE 5FF 5GG 5HH 5II 5JJ

Ceramics 6A 6B 6C 6D 6E 6F 6G 6H 6I 6J 6K 6L 6M 6N 6O 6P 6Q 6R 6S 6T 6U 6V 6W 6X 6Y 6Z 6AA 6BB 6CC 6DD 6EE 6FF 6GG 6HH 6II 6JJ

7A 7B 7C 7D 7E 7F 7G 7H 7I 7J 7K 7L 7M 7N 7O 7P 7Q 7R 7S 7T 7U 7V 7W 7X 7Y 7Z 7AA 7BB 7CC 7DD 7EE 7FF 7GG 7HH 7II 7JJ

8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 8O 8P 8Q 8R 8S 8T 8U 8V 8W 8X 8Y 8Z 8AA 8BB 8CC 8DD 8EE 8FF 8GG 8HH 8II 8JJ

Fu
nc

tio
na

l M
at

er
ia

ls Ceramics

9A 9B 9C 9D 9E 9F 9G 9H 9I 9J 9K 9L 9M 9N 9O 9P 9Q 9R 9S 9T 9U 9V 9W 9X 9Y 9Z 9AA 9BB 9CC 9DD 9EE 9FF 9GG 9HH 9II 9JJ

Fu
nc

tio
na

l M
at

er
ia

ls

So
ft 

Matt
er

10A 10B 10C 10D 10E 10F 10G 10H 10I 10J 10K 10L 10M 10N 10O 10P 10Q 10R 10S 10T 10U 10V 10W 10X 10Y 10Z 10AA 10BB 10CC 10DD 10EE 10FF 10GG 10HH 10II 10JJ

11A 11B 11C 11D 11E 11F 11G 11H 11I 11J 11K 11L 11M 11N 11O 11P 11Q 11R 11S 11T 11U 11V 11W 11X 11Y 11Z 11AA 11BB 11CC 11DD 11EE 11FF 11GG 11HH 11II 11JJ

12A 12B 12C 12D 12E 12F 12G 12H 12I 12J 12K 12L 12M 12N 12O 12P 12Q 12R 12S 12T 12U 12V 12W 12X 12Y 12Z 12AA 12BB 12CC 12DD 12EE 12FF 12GG 12HH 12II 12JJ

Fu
nc

tio
na

l M
at

er
ia

ls

So
ft 

Matt
er

13A 13B 13C 13D 13E 13F 13G 13H 13I 13J 13K 13L 13M 13N 13O 13P 13Q 13R 13S 13T 13U 13V 13W 13X 13Y 13Z 13AA 13BB 13CC 13DD 13EE 13FF 13GG 13HH 13II 13JJ

Fu
nc

tio
na

l M
at

er
ia

ls

Se
mico

nd. 14A 14B 14C 14D 14E 14F 14G 14H 14I 14J 14K 14L 14M 14N 14O 14P 14Q 14R 14S 14T 14U 14V 14W 14X 14Y 14Z 14AA 14BB 14CC 14DD 14EE 14FF 14GG 14HH 14II 14JJ

15A 15B 15C 15D 15E 15F 15G 15H 15I 15J 15K 15L 15M 15N 15O 15P 15Q 15R 15S 15T 15U 15V 15W 15X 15Y 15Z 15AA 15BB 15CC 15DD 15EE 15FF 15GG 15HH 15II 15JJ

16A 16B 16C 16D 16E 16F 16G 16H 16I 16J 16K 16L 16M 16N 16O 16P 16Q 16R 16S 16T 16U 16V 16W 16X 16Y 16Z 16AA 16BB 16CC 16DD 16EE 16FF 16GG 16HH 16II 16JJ

Fu
nc

tio
na

l M
at

er
ia

ls

Se
mico

nd.

17A 17B 17C 17D 17E 17F 17G 17H 17I 17J 17K 17L 17M 17N 17O 17P 17Q 17R 17S 17T 17U 17V 17W 17X 17Y 17Z 17AA 17BB 17CC 17DD 17EE 17FF 17GG 17HH 17II 17JJ

18A 18B 18C 18D 18E 18F 18G 18H 18I 18J 18K 18L 18M 18N 18O 18P 18Q 18R 18S 18T 18U 18V 18W 18X 18Y 18Z 18AA 18BB 18CC 18DD 18EE 18FF 18GG 18HH 18II 18JJ

19A 19B 19C 19D 19E 19F 19G 19H 19I 19J 19K 19L 19M 19N 19O 19P 19Q 19R 19S 19T 19U 19V 19W 19X 19Y 19Z 19AA 19BB 19CC 19DD 19EE 19FF 19GG 19HH 19II 19JJ

20A 20B 20C 20D 20E 20F 20G 20H 20I 20J 20K 20L 20M 20N 20O 20P 20Q 20R 20S 20T 20U 20V 20W 20X 20Y 20Z 20AA 20BB 20CC 20DD 20EE 20FF 20GG 20HH 20II 20JJ

Other



 

17 
 

societal benefits unlocked by discoveries and innovations from the AMII. To transition from theory to 
practical application, industry must actively participate in the development of AMII to help bridge 
between scientific innovation and real-world implementation. 

One need from the community identified by these industry leaders was for graduates equipped with 
critical thinking skills capable of bridging autonomous experimentation and materials R&D. 
Graduates should possess the ability to analyze where processes have succeeded or failed and think 
critically about the implications. Additionally, there is a pressing data problem that necessitates a 
comprehensive and well-defined data structure driven by community incentives. The challenge of 
communicating across diƯerent technical languages, particularly between AI/ML experts and 
experimental scientists, was noted. Additionally, it is diƯicult to find graduates with the combination 
of AI/ML coding skills and the specific specialization in their respective materials field. For example, 
the combination of a Ph.D. Chemical Engineering graduate who studied catalyst development 
usually does not have experience or exposure to coding or language skills for AI/ML algorithms. The 
inverse is also true—coders do not possess in-depth knowledge or expertise in chemistry or 
engineering. Expecting the latter to learn chemistry or engineering is likely less practical than having 
chemists or engineers use AI/ML tools while pursuing their respective disciplines.  Presumably this 
will change, as these students are beginning to use the digital tools more often in their 
discovery/development protocols, but an intentional and possibly formal changes to the curricula 
could be considered. For successful collaboration, new scientists need training that encompasses 
both domains. Furthermore, industry emphasized the essential role outside researchers play in 
supporting industrial development and aligning fundamental research with broader industry goals, 
such as carbon neutrality and manufacturability within realistic timeframes. 

The panel discussed several pathways to foster industry engagement. Early engagement with a 
company champion is vital for testing concepts and ensuring the materials developed are both 
useful and applicable. Identifying realistic points in the design phase and involving federal agency 
support can positively impact project success. Passionate scientists or engineers within companies 
are crucial to drive projects forward; without their commitment, projects risk falling apart. 
Management support is also essential, and this requires clearly explaining the project's value. 
Choosing significant, impactful problems that align with industry interests can facilitate this support. 

Robust interactions and partnerships necessitate specific company requirements. These 
requirements include aligned objectives and a clear business case demonstrating how collaboration 
will improve production, reduce costs, or expedite market entry. Pre-competitive collaboration on 
fundamental science is possible, provided there is trust between parties. Companies need 
assurance that their collaborators understand their key needs and are bringing a comprehensive 
solution to the table. 

Persuading industry leadership to invest requires a compelling vision and demonstrated long-term 
value. The potential for collaboration with national labs and other institutions can serve as a 
significant recruiting tool and a means to leverage applied research funding eƯectively. Additionally, 
structured agreements outlining terms of engagement can facilitate management buy-in and 
commitment. 

Audience comments emphasized the potential for academic-industry consortia, such as those 
forming around digital twins, sustainability, and circular chemistry. The importance of early 
engagement with companies to discuss scaling and pilot testing was highlighted. Companies need 
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assurance that proposed technologies are robust and scalable to mitigate the risks associated with 
commercialization eƯorts. Engaging in detailed conversations early and understanding company 
needs can foster a collaborative environment and help build trust. 

An example of impactful academic discovery involved a collaboration where a student developed a 
diagnostic technique that solved a significant problem for the company. This example highlighted the 
potential for academic partnerships to drive innovation and address real-world challenges. Overall, 
the panel underscored the importance of communication, early engagement, and alignment of 
objectives to build a successful community that can realize the goals of the AMII. 

 

Working Session 2: Identify Gaps in the Autonomous Materials 
Innovation Infrastructure (AMII) 

Similar to Breakout Session 1, breakout groups reconvened to work together to discuss and capture 
specific gaps in the AMII for their materials topic of focus. Participants were asked to consider gaps 
concerning, but not limited to: 

• Sensors and Data Collection: Identify the types of sensors required to gather relevant data about 
the material being tested. This type could include temperature sensors, pressure sensors, strain 
gauges, etc. 

• Automation and Control Systems: Explore how automation can be implemented to control the 
experimentation process. Automation involves programmable logic controllers (PLCs), 
microcontrollers, or even AI-driven systems. 

• Data Analysis Techniques: Determine the analytical methods and algorithms needed to process 
the data collected from the sensors. Techniques might involve statistical analysis, machine learning 
algorithms, or other computational techniques. 

• Feedback Mechanisms: Implement feedback mechanisms to adjust experimental parameters in 
real-time based on the data collected. Mechanisms could involve closed-loop control systems or 
adaptive control algorithms. 

• Safety Protocols: Ensure that appropriate safety protocols are in place to prevent accidents or 
damage to equipment during autonomous experimentation.  

• Integration with Laboratory Equipment: Consider how the autonomous instrumentation will 
integrate with existing laboratory equipment such as furnaces, mechanical testers, or spectroscopy 
devices. 

• User Interface and Accessibility: Design a user-friendly interface for researchers to interact with 
the autonomous instrumentation system. Options include a graphical user interface (GUI) or a 
command-line interface (CLI). 

• Data Storage and Management: Develop a system for storing and managing the vast amounts of 
data generated during experimentation. Systems could involve database management systems or 
cloud-based storage solutions. 

As in breakout session 1, breakout leads presented their findings to the larger group. 
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Landscape Data Analysis 
To provide a visual representation for a comparison between the status of the AMII of each materials 
domain considered during the breakout sessions, the following procedure was performed to develop 
sunburst charts. First, the collected workshop data found on sticky notes were transcribed and 
digitized by NSF staƯ with identified gaps being diƯerentiated to capabilities by using red font. Each 
entry of a capability was counted as 1, and no qualitative assessment was made. For example, for 
the structural metals table, the digitized table is shown below: 

 

This process resulted in the following capability counts for Structural Metals: 

 

Across all materials domains, the highest number of entries identified was 11, which was 
subsequently used for scaling. Therefore, each of the 36 numbers above was divided by 11 to give a 
percentage. Using this percentage, each section was assigned a numerical value between 0 and 5 
using the following scale: 

0%    0 
< 20%    1 
20-40%   2 
41-60%   3 
61-80%   4 
81-100%   5 
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For example, Discovery and Experimental Design: MODELS has 8 entries in the Structural Metals 
landscape. Therefore, it would be assigned 8/11 = 72% and therefore a 4. These assignments were 
then used to develop a sunburst chart, with the number determining the number of fields of darkened 
color (see below for Structural Metals example.) The full array of data gathered and digitized as 
described above is provided in Appendix C. 

  

While this does not provide a quantitative assessment of the readiness of the AMII in a given domain 
to fulfill the promise of autonomous experimentation, it gives a comparative indicator of how far 
developed the community is for each material domain.  

AMII Landscape, Gaps, and Opportunities 
The confluence of AI, robotics, high-throughput screening along with the foundational capabilities 
established over the past decade of the MGI provide an opportunity to accelerate, and fundamentally 
change, how the materials community conducts research into the future. It is first necessary to understand 
the current infrastructure landscape and identify both the existing capabilities and the key gaps. Because 
the infrastructure requirements depend in part on the materials class, the workshop participants were split 
into the following groups to dive more deeply into this topic: structural metals, structural ceramics, 
structural soft matter, structural composites, functional metals, functional ceramics, functional soft matter, 
and functional semiconductors. The participants in each group were asked to use sticky notes to identify 
existing capabilities and gaps in models, data and information handling, autonomous instrumentation, 
software, sample handling/handoƯ, and decision tools in the following categories: discovery and 
experimental design, synthesis, characterization, scale up/manufacturing, certification and qualification, 
and recycling/end of use. The content gathered with these sticky notes is summarized in the starburst chart 
for each section and detailed further in Appendix C. The groups were also asked to provide a short summary 
of the discussion that took place throughout the day. These narratives developed by the facilitators are 
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provided below and reflect the discussions during the meeting. They do not reflect the view of specific 
individuals, institutions, or agencies, but rather are intended as a basis for further discussions and 
engagement. Additional detail captured in PowerPoint format in Appendix D.  

This landscaping exercise is intended to enable better understanding of current infrastructure capabilities. 
The inventories and gaps discussed below are derived from inputs collected at the workshop based on the 
knowledge and experiences of diƯerent participants. They are not comprehensive and do not reflect the 
opinion of all attendees. Also, the specific resources listed throughout the document were identified by the 
participants and should not be taken as an endorsement in any way or considered to be complete. The 
community will be provided with additional opportunities to contribute resources to this landscaping 
exercise.  

Structural Materials 

Structural Metals 
Facilitators: Dan Miracle (AFRL), Brad Boyce (SNL), Jae Hattrick-Simpers (University of Toronto, 
Acceleration Consortium) 
Participants/Observers: Ibrahim Karaman (Texas A&M), Andrew Detor (DARPA), Robert Hart (U.S. 
Army DEVCOM Ground Vehicle Systems Center), Harry Partridge (NASA), Eddie Gienger (JHU Applied 
Physics Lab) 
 

Current Landscape 
Structural metals are relatively new to combinatorial and autonomous experimentation (AE) 
methods, so the infrastructure and facilities are less well established than for other materials such 
as polymers and thin film materials. Nevertheless, new capabilities are being established and 
validated for this distinct class of materials. Existing software packages and databases are available 
to drive innovation in structural materials, examples include ARES OS, Enthought, and products from 
companies such as Citrine and QuesTek. Limited infrastructure exists for the rapid and robust 
primary synthesis and characterization of bulk metals in a manner that is consistent with AE 
methods. In most cases, these are one-of-a-kind facilities at a low technology readiness 
level/manufacturing readiness level (TRL/MRL) that have not yet been adequately reduced to 
practice. Further, all of the infrastructure needed for the full AE cycle is generally not available at a 
single facility. Several large eƯorts are currently underway to develop and validate AE infrastructure 
and methods for structural metals, exemplar programs include BIRDSHOT, HT-READ (both funded by 
HTMDEC), Georgia AIM, OSU HAMMER and P2P, other programs may also exist. 
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Identified Gaps and Opportunities 
Major gaps exist for structural metals under the topics of: synthesis; characterization; design-
relevant properties; legacy facilities; workforce; and certification and qualification. AE methods 
require rapid, on-demand synthesis of bulk (≥100 g) metal alloys. None of the current lab-scale 
primary synthesis methods (arc or induction melting, additive manufacturing) are suƯiciently rapid 
and robust, but the aggressive use of automation (especially in arc melting) and innovative redesign 
(including bulk ingot melting using lasers) are expected to make major advances in this area. Additive 
manufacturing (AM) is already strongly automated, but gaps in metal AM include availability of 
powder feedstock in the preferred spherical form, and the ability to rapidly determine deposition 
parameters that can avoid the formation of common material defects. AE approaches to rapidly 
evaluate the eƯect of microstructure on properties requires new thermomechanical processing 
methods that in most cases have not yet been conceived or validated. Characterizing composition 
and microstructure is currently suƯiciently automated to be used in an AE workflow, but some 
aspects of quantifying the results (for example, microstructure classification and diƯraction 
indexing) are still bottlenecks. Work is currently underway to solve these gaps. Many high-throughput 
techniques have been validated to measure properties, but most have not yet been automated or 
reduced to practice. Characterizing materials under representative service conditions remains a gap. 
Drastically reducing the time between measuring lab-scale properties and input to design-relevant 
models is a major issue. New eƯorts are just underway to begin tackling this need, for example, the 
DARPA METALS program. Replacing legacy facilities with digital equipment remains a barrier, along 
with training a competent workforce that is facile in materials science as well as data science, 
artificial intelligence methods and mechatronics-robotics. Finally, accelerated materials design and 
deployment via AE will necessitate new policies and procedures for certification and qualification. 
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Structural Ceramics 
Facilitators: Joshua Schrier (Fordham University), Sergei Kalinin (UT Knoxville/Pacific Northwest 
National Laboratory) 
Participants/Observers: James Dorman (DOE), Stu Miller (ULRI), Chris Haines (ARL)   
 

Current Landscape 
Structural ceramics—non-metal, non-organic materials that can withstand high mechanical, thermal, and 
tribological stresses, often in corrosive environments and at high temperature—are a broad category that 
span high-tech, low-volume materials applied as electronic elements (capacitors, dielectrics, circuit 
boards), coatings in specialized applications (such as thermal protection tiles in hypersonic, aerospace, and 
nuclear technologies) to bulk commodity materials such as glass and cement. The range of production 
scales, compositions, and wide variety of synthesis and processing conditions make authoritative general 
statements about the current state of the field elusive; the below text should be considered as illustrative 
examples at the diƯerent scales. 

At present, most aspects of experimental design rely upon heuristics and experience. Current 
computational approaches build upon the foundation of past MGI computational database infrastructure 
(AFlow, OQMD, Materials Project); in practice these databases of physics-based (density functional theory, 
DFT) simulation results are a necessary—but insuƯicient—part of a computational design of new structural 
ceramics. For example, recent work used a combination of DFT and machine-learned descriptors to predict 
(and subsequently experimentally validate) the synthesizability of high-entropy carbonitrides and borides by 
hot-press sinteringi. Real materials are considerably more complex than pure chemical formulas, and both 
microstructure and dopants can play a significant role in the emergence of properties. Recent work on 
experimental design of high-performance cementitious materials uses data-driven approaches trained on 
experimental data,ii to treat these properties. One exciting area is the use of large-language model (LLM) 
design tools for providing decision support in the design of novel alkali-activated concrete mixes as 
environmentally friendly alternatives to conventional Portland cement-based concrete.iii  

Participants emphasized that the state of synthesis, characterization, and scale-up for structural ceramics 
generally lags that of other materials. For example, whereas additive metal and polymer fabrication are now 
well-established, additive techniques are still an emerging research area in ceramics, in part because the 
necessary processing steps (power handling, debinding, sintering) are less amenable to automation, and in 
part because the chemical diversity of binders and ceramic powders. The state of additive manufacturing of 
ceramics has been recently reviewed.iv Some exemplar projects discussed in the panel included eƯorts at 
HT-Max project at Johns Hopkins University on extrusion-based additive manufacturing for high-
temperature ceramicsv, and work at the Underwriters Laboratory Materials Discovery Research Institute 
(MDRI).vi Autonomous systems for cementitious materials development have been proposed,vii but not yet 
implemented. A small number of commercial vendors, such as Cerion Nanomaterials,viii provide scaled-up 
nanomaterials for advanced ceramics. Additionally, while it is appreciated that recycling and end-of-use 
management is important, the economies of scale for the commodity applications make it challenging (for 
concrete), require strong social involvement (glass), or require special handling (nuclear).  
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Existing standards for certification and qualification of structural ceramics are typically conducted on 
length- and timescales that are incompatible with miniaturization and rapid-turnaround required for 
feedback in autonomous experimentation. One way these issues are being addressed is by using non-
destructive proxy measurements to intelligently plan traditional certification experiments. A notable 
example is work at Army Research Laboratory on non-destructive, high-throughput dielectric-based testing 
of armor ceramics which is used to intelligently plan ballistics testing to maximize information gain. ix  

Identified Gaps and Opportunities 
Discovery & Experimental Design. The MGI created a strong foundation of computational/theoretical 
pipelines; the AMII has the opportunity to connect these models to experimental data, especially 
with theory-data integration, experimental validation of data and theory-based prediction, and 
updating theory based on experimental data. As in the other materials areas, there was general 
support for ML/AI serving as more of a human-in-the-loop assistant tool rather than hands-oƯ 
automation. 

The integration of experimental data with theory provides an opportunity to improve the underlying 
fundamental theory of materials formation. Nascent eƯorts include understanding the interplay 
of thermodynamics and kinetics for ceramic synthesizabilityxand uncovering the microscopic 
mechanisms of crystallization in cementitious materials.xi Simulating the length- and time-scales 
needed to understand nucleation processes will benefit from ongoing developments in machine-
learned interatomic potentials.xii The AMII would have a synergistic value in generating high-
quality/high-quantity experimental data from automated/autonomous laboratories to provide 
constraints that would enable development of better theories, beyond just empirical input-output 
relations to ML models. Similar advances are anticipated with the broad deployment of phase field 
models for microstructure formation, including both numerical schemes and physics-informed 
neural network and neural operator accelerated schemes. It is important to note that key aspect of 
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these techniques is not only forward modeling of materials microstructure evolution, but capability 
to discover governing equations from the experimental data. 

A critical gap is the need for improved data repositories, especially for experimental data. For 
example, the NIST Structural Ceramics databasexiii has not been updated since 2002. Nascent eƯorts 
to construct databases for cementitious materials developmentxiv should be encouraged and will be 
enabled by rapidly improving LLM-based literature extraction tools.xv Direct integration with new 
automated/autonomous laboratories would enable the capture of negative results from 
methodologically correct experiments, which are not typically reported (but highly valuable for 
machine learning model development). The heterogeneity of methods and equipment used in this 
field is a challenge, and there is a need to develop appropriate ontologies. Although in principle the 
“pull” of added value from machine learning is high, there will be some need for “push” requirements 
from funders and journals to make sure that these data are deposited in reusable ways.  

Workforce development is another challenge. There are only a limited number of ceramic 
engineering programs in the United States, so this is an opportunity that suggests that a large impact 
can be made by focusing eƯorts on a few sites. Programs that help build stronger partnerships 
between academia and industry—such as funding faculty sabbaticals, student internship/co-op 
placements—can have a disproportionate impact. It is important to analyze the underpinning driving 
forces in this field. For classical ML applications, since the introduction of personal computers in the 
early 1980s, there has been a continuous evolution of the IT and computing workforce. The computer 
builders and software developers of the 1980s laid the foundation by creating companies like 
Microsoft and developing key software horizontals. More recently, the emergence of deep learning in 
2012 has attracted skilled professionals from fields such as density functional theory, molecular 
dynamics, and finite element analysis. These experts, now armed with deep learning experience, are 
founding companies focused on applying deep learning to theoretical domains. Examples include 
Schrödinger and InSilico, alongside hundreds of startups dedicated to theoretical drug and materials 
discovery. This convergence of expertise in traditional computational methods and deep learning is 
driving innovation and creating new opportunities in these advanced scientific fields.  

The incorporation of automated experiments cannot be expected to benefit from the same 
evolutionary process that transformed IT and computing in the past. This shift introduces 
fundamentally new challenges and creates a need for diverse tasks, ranging from instrument 
development and workflow design to new types of machine learning for experimental design and 
cloudification. Currently, we lack a trained workforce equipped to tackle these multifaceted 
demands. Therefore, it is of utmost priority for current domain experts to adopt and integrate 
machine learning expertise. However, the challenge is compounded by the scarcity of qualified 
individuals capable of training these experts—only a small number of pioneers in the field are 
available to lead this transformation. This gap underscores the urgent need for educational initiatives 
and professional development programs to build the necessary skills and knowledge base. 

High-throughput synthesis of structural ceramics is challenging and would benefit from 
investments in both basic and applied research. A challenge for automation and autonomy is the 
wide variety of materials and processes, and the high temperatures and long times 
involved.  Developing high-throughput experimental methods for structural ceramics has many 
diƯerent methods, each with their own challenges (hydrothermal, powder synthesis, molten salts, 
etc.), and many methods present challenges for common high-throughput instruments (such as the 
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use of corrosive acids). As noted above, additive manufacturing methodologies for structural 
ceramics lag developments for additive metal manufacturing; there is an opportunity both for 
investment and innovation to design new processes. Predictive modeling for additive manufacturing 
of structural ceramics is under-developed. Large opportunities would be unlocked by new 
accelerated synthesis for powders, development of novel binders, and formulation methodologies 
(each of which themselves would benefit from automation/autonomous operation). In relation to the 
need for improved data repositories (noted above), the creation of an “Additive Structural Ceramics 
Data Repository” containing information needed to reproducibly synthesize and characterize 
powders, ink formulations, and processing conditions would be a powerful demonstration of AMII 
methodologies. 

High-throughput characterization is another challenge, because many structural applications 
require large samples which are incompatible with the typical high-throughput miniaturization 
approaches often used for other materials classes. Similarly, their mechanical and functional 
properties are often non-local, and are determined by subtle details of the structure, composition, 
and strain variability within the part. These issues limit the potential use of purely data-based 
multifidelity methods and require physics-based models. Typical characterization modalities are 
slow, and so there is also a need for low-cost and fast proxy measurements which can be used for 
preliminary evaluation or optimally planning traditional characterization approaches. One example 
is the use of machine learning to generate simulated SEM micrographs using laser spot brightness 
during laser sintering of ceramics.xvi These eƯorts in turn necessitate the development of ML 
algorithms that act as proxies and establishing their predictive power. Strongly connected to this is 
the general dearth of the instrument control APIs and interfaces that allow direct deployment of ML 
agents on the autonomous tools, and tools for building active characterization workflows given 
specific exploratory goals.    While the eƯorts in these areas have been initialized, or the time being 
they lack systematic support and broad community acceptance. A closely related need for 
Certification /Qualification was discussed, and participants emphasized the need for automated 
certification and mechanisms for sharing samples across laboratories for trusted characterization. 

In parallel to developing new synthesis and characterization methods and machines (“hardware”) is 
the need to develop appropriate software abstractions and “hyperlanguages” to represent possible 
operations in the laboratory (which can be “compiled” to work with particular instruments), 
orchestration of multiple parallel experimental processes, and conduct multi-step workflows to 
achieve desired reward functions. Currently, there is a mixed landscape of home-built solutions, 
vendor-specific application programming interfaces (API), and lab-driven modifications. 
Development of standardization consortia would be helpful, especially if linked to purchasing 
requirements of customers.  Consortia would also provide an opportunity to improve traceability of 
the experimental workflows. A set of agreed upon monitoring indicators from the processing and in-
situ materials processing side can be a step towards capturing and tracing experimental workflows. 
Current examples may be RHEED during PLD growth. 

Scale-Up and Manufacturing could be supported in a variety of ways. One model would be the 
creation of user facilities that would enable small companies or academic groups to develop and 
scale novel ceramic materials faster and cheaper. This model might take the form of services which 
can synthesize and formulate new powder and binders for ceramic additive manufacturing or 
prototyping of novel materials. These eƯorts could initially be developed and operated as user 
facilities with the goal of data collection and prototyping—along the lines of the National 
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Nanotechnology Initiative User Facilitiesxvii —before technology transferring to commercial 
operation. 

Recycling/end-of-use would be advanced by the creation of easily accessible computational models 
of lifecycle analysis, techno-economic evaluation, and environmental impact which allow for 
incorporating these as design constraints earlier in the development process. At present, this type of 
analysis is highly challenging and requires significant expertise which makes it largely unavailable. 
Even approximate—but easily computable—versions would help development, by allowing 
optimization algorithms to incorporate the applied research outcomes into the immediate 
experimental result or goal in the early-stage research lab to develop more sustainable processes 
and materials. Another important and promising research direction is the use of recycled ceramics 
as aggregate materials in structural concrete. 

Structural Soft Matter 
Facilitators: Keith A. Brown (Boston University), Vicky Nguyen (JHU) 
Participants/Observers: Sanket Deshmukh (Virginia Tech, GlycoMIP), Chinedum Osuji (UPenn), 
John A Schlueter (NSF), Rich Vaia (AFRL)  
 
Current Landscape 
The full range of topics we discussed is documented on the sticky notes (see Appendix C). This 
summary focuses on the conversation during the brainstorming session as well as items not 
explicitly noted on the stickies. 

 

 

We began this session by listing the largest eƯorts in this space with noteworthy examples being 
CMU’s cloud lab, relevant MIPs, and CHIMAD. While listing these, we noted that many eƯorts are 
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likely occurring within industry, namely the large-scale manufacturers of structural polymers. There 
are limited examples of relevant academic and national lab autonomous experimentation systems 
and so we broadened our discussion to cover all facets of AI-accelerated work in this space. We also 
included discussion of wide-ranging tools for accelerating research including very general ones (e.g. 
ChatGPT) and software platforms that are shared between many materials types (e.g. python 
packages like BoTorch or ChemOS). It is also worth highlighting the advent of software tools (e.g. 
CRIPT) specifically designed to capture the multidimensional parameter sets (e.g. topology; molar 
mass dispersity, end-group functionality) needed to properly describe macromolecular materials.  

One additional point was that there was discussion about the specific role of each category. For 
instance, should discovery include the synthesis and characterization of new materials, or is it 
simply the identification of candidates with their synthesis and characterization being relegated to 
their respective sections? We ultimately opted to think about the synthesis section as including 
making materials during the discovery process (rather than just being synthesis during development 
or manufacturing).  

Identified Gaps and Opportunities 
As a grand challenge, we noted that AMII could allow for the true inverse design of materials with 
multiple properties that are perhaps commonly thought of as being in conflict. For example, 
materials that are stiƯ and tough or materials that are stiƯ and sticky. We thought that the techniques 
embodied in AMII could allow for this vision to be realized. 

Most of the conversations during lunch focused on the questions relevant to the industrial panel. We 
speculated that a major need from industry are trained people and the know-how related to emerging 
AI tools. An advantage of the academy is our critical mass of technical expertise, which can be 
uncommon in industry. That said, industry has many more resources than the academy, albeit with 
the full-time equivalent cost being much higher. 

A key method of engagement we discussed were consortia with discussion focusing on ‘America 
Makes’ as an exemplar. We noted that industrial players have many reasons to participate in such 
consortia including developing relationships across the supply chain and managing contracts. We 
noted that a major need is for industry to communicate their problems to the academy - perhaps 
through a consortium - to guide our research. A consortium can also help set the community 
roadmap, which we felt was critical to align the eƯort of the community.  

A fundamental problem with structural soft matter is that properties depend on structure across 
scales and that this structure depends strongly and often unintuitively on processing. We do not even 
have a structural language or ontology to describe this structure in a compact way. The critical 
missing piece is reliable data that connects processing-structure-property across the relevant 
scales. 

Addressing these needs would require a number of advances including: (1) Clear definitions of 
material properties and data reporting as polymers can exhibit large strains, tension/compression 
asymmetry, and anisotropic properties, (2) Reference materials and data, (3) In situ and in line 
measurements to determine properties, (4) Surrogate properties and processes for connecting 
properties to certification/qualification (e.g. melt flow index). It is crucial that such surrogates are 
developed alongside knowledge about limitations and boundaries. (5) An interoperable polymer 
database, perhaps run by a national facility, but with good and verified data. (6) Standard modular 
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workflows for processing history - what is a 96 well plate equivalent for materials testing, and (7) 
SuƯiciently complex robotic handling. 

We noted that we need better simulation tools. Current models are not suƯicient because of the 
wide range of time and length scales needed to describe the behavior of these inherently 
nonequilibrium materials. Digital twins are particularly important as thermal, chemical, and 
mechanical factors are so strongly coupled, particularly to describe chemical aging or the eƯects of 
humidity on the thermomechanical properties. This complexity means that the community needs 
better models. 

We discussed a few additional open challenges. For instance, in order to have full relevance to 
industrial manufacturing, the academy needs access to a full-scale processing line and enough 
materials to make it work. We noted that there is no one funding people looking at the reliability of 
data and discussed the example of the Journal of Organic chemistry as an example of an entity 
putting money into reproducibility. There was also discussion about whether autonomous 
experimentation systems should be one-oƯ systems developed by the academy or commercial 
products. The transition seen in the use of AFM from custom to commercial was an illuminating 
example as these systems have many parallels. 

Finally, we discussed the open questions related to the end of life of materials. We noted that there 
was a lack of metrics for -bilities (recyclability, sustainability, manufacturability). This lack 
compounds with the fact that recycling is hard. We shared the goal of making recycling cheaper, but 
also discussed how doing this could substantially narrow the scope of polymer engineering. 

Structural Composites 
Current Landscape 
The integration of AI and automated experimentation in the development of new structural 
composite materials is still in its early stages, but current applications include utilization of AI to 
optimize material composition (i.e. reinforcement and matrix materials) and to predict material 
properties of high-performance fiber-reinforced composites. Current software tools leveraging AI to 
accelerate material discovery include commercial tools like Granta Materials Intelligence AI+ 
(Granta MI AI+) and research tools using TensorFlow-based custom models. These tools utilize 
machine learning algorithms and data-driven approaches to simulate and predict the mechanical, 
thermal, and chemical properties of composite materials based on their composition, fiber 
orientation, and processing conditions and to gather insights on process-property relationships. 
These commercial and research tools are typically limited to solving discrete problems and require 
significant human oversight. There are no concrete examples of programs enabling full automated 
experimentation of new structural composites connecting discovery to manufacturing to 
characterization to end of life recycling. As far as government funded programs, the Institute for 
Advanced Composites Manufacturing Innovation (IACMI) has invested in programs focused on 
automated/high-throughput inspection technology for certification and validation of automotive 
composites as well as high throughput recycling processes. Additionally, autonomous 
experimentation efforts focused on polymers under programs like DMREF translate well towards the 
discovery of new polymer matrix materials to be used in structural composites. 

Identified Gaps and Opportunities 
The existing infrastructure in automated experimentation of structural composites remains 
immature due to some significant gaps in areas such as: characterization methods, modeling & 
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simulation, qualification, and recycling. Characterization methods for structural composites are 
currently based around manual methods that require human interpretation, making automation 
difficult. Failure of a composite in tension, compression, or shear is a micro-level failure that is being 
measured through a macro-level test specimen, and currently humans must visually inspect the 
failure mode to interpret the quality and validity of the numerical test data. Digital methods (Digital 
Image Correlation, Virtual Fields Method, and others) are available for determining local material 
response, but these methods do not currently work well with many established ASTM tests and 
fixtures, which require strain gauges or extensometers. Industry and academia have developed their 
own specialty fixtures for compression and shear property testing and there is not widespread 
agreement on the best fixture or test methods used for measuring a particular property. In addition, 
a significant amount of labor goes into developing test specimens and processing them through 
current ASTM test standards, therefore automating experimental characterization will require 
alternative test methods and models that can correlate those test results to material properties 
relevant to designs. Qualification processes for structural composites are highly regulated, 
particularly in aerospace, however in other industries like automotive and sporting goods, high 
production volume manufacturing environments may be more conducive to accelerated 
qualification through automation, particularly in non-critical structural applications. Similar to 
challenges with characterization methods, process modeling and finite element structural modeling 
are done at a macro level scale, requiring full mechanical characterization on the composite 
laminate level. Discovery of new composite materials involves discovery of new matrix materials 
(polymers), new reinforcements (fibers), and/or new combination of these constituents. Multi-scale 
models are available for finite element models and can be used to optimize the material 
constituents, but physics are often idealized, especially regarding fiber-matrix interface 
interactions, and these models do not account for process-dependent effects. Accelerating the 
discovery of new composite materials will require improved multi-scale models and correlations 
between small scale experimental coupons and macro-level properties needed for design. 
Recycling of thermoplastic composites is far ahead of recycling for thermoset composites. To 
improve sustainability of composites, there is a need for full lifecycle models and understanding for 
how structural composites can be recycled at end-of-life and utilized as a useful structural 
feedstock rather than viewed as a waste product. 

 

Functional Materials 

Functional Metals 
Facilitators: Francesca Tavazza (NIST), Philseok Kim (ARPA-E) 
Participants/Observers: Mike Glavicic (Rolls-Royce), Aisha Haynes (OUSD(R&E)), John Lockemeyer 
(Shell Global Solutions US), Rob Moore (ORNL), Mitra Taheri (JHU), Leslie Hamilton (JHU APL), JeƯrey 
Aguiar (Lockheed Martin Corporation) 
 
Autonomous experimentation applied to the research and development of functional metals is at its 
early stages and still presents many challenges. In a pipeline that starts from Discovery & 
Experimental Design, then covers Synthesis, Characterization, Manufacturing, Certification and 
ends with Recycling/End-of-Use, most of the current work covers the first three steps, especially the 
discovery and experimental design, while very little is done in the last three steps.  
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Current capabilities related to Discovery and Design include a wide range of models, some physics-
based and some purely phenomenological, covering length scales from atomistic to continuum. A 
few, key models are still missing, though, as, for instance, one for ductility predictions. Some ML 
algorithms are available too, as surrogate models. Predictive software tools also exist, at least as a 
starting point. Substantial data is available, as are data handling tools, but they come with pressing 
open questions. Among those: how to put together legacy data and new ones? How to restructure 
data and data capturing to work better with AI and autonomous systems? What are the needed 
metadata? There is a large agreement in the community on the need for negative data, which are 
currently not usually available. What infrastructure is needed to share negative data? Lack of 
interoperability and standardization in data handling is another substantial problem that needs to be 
addressed as soon as possible. More work is also needed in designing full autonomy and real-time 
control in instrumentation, multi-workflow orchestration and intelligent decision-making from 
sparse data as well as automated sample handling strategies.  

 

Both the synthesis and characterization steps have some AI-driven models as well as predictive tools 
available. Automated experimental setups also exist, a few of which actually have autonomous 
capabilities. Examples of such instrumentation for synthesis exist within the INTERSECT initiative 
ecosystem developed at ORNL, which includes autonomous flow reactor with multi-modal in situ 
characterization, autonomous chemistry lab with multi-modal characterization tools connected by 
mobile robots, and autonomous additive manufacturing for metals and composites. Additionally, it 
seems that the complexity of robotic synthesis is under-appreciated.  Some systems are obviously 
more amenable to automation, but there remain many gaps.  The ability to develop workflows that 
are robust using robotics remains a bit of a challenge.  This varies, of course depending upon the 
system being considered (e.g. homogeneous versus heterogenous syntheses), but a robust workflow 
depends upon many variables which can be influenced by the individual robotics being employed. 
Robotics typically need to be customized for the task at hand, which makes it diƯicult to have reliable 
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operation and quick support from vendors when things go wrong.  Invariably experimentalists 
become frustrated with the machines that are supposed to alleviate their mundane or dangerous 
tasks and resort to human intervention.  While it is clear that the one-unit-does-it-all type of 
approach often leads to significant problems, breaking the process into pieces also comes with 
challenges. Interruption of a serial process by one robotic aspect of the workflow represents a 
significant issue. This will be a diƯicult issue to resolve and will require deep connections between 
users and vendors to arrive at sustainable solutions. 

In the characterization arena, there exist 4D-STEM, neutron beamlines, tools for thermal analysis, 
microscopy, and PLD with multi-modal characterization. There seems to be more software available 
for characterization (ex: DT of 4D-STEM at JHU, AI-driven feedback loops used in several institutions 
and in-line automated testing at DARPA METALS), than for synthesis. A main diƯerence between 
these two steps is that synthesis is very material and condition specific, i.e., not easily generalizable, 
while characterization techniques can more easily be used across diƯerent domains. Ideally, in an 
autonomous laboratory characterization should be done in-situ and on-line, but that is not common 
at the moment. Additionally, the amenability of the characterization component to integration into 
an autonomous system depends significantly on the field being considered.  For example, testing of 
materials for specific physical properties (e.g. conductivity, mechanical strength, breakdown 
voltage, etc.) can often be more easily automated than testing for physiochemical properties.  The 
latter often involves chemical conversion testing, online analysis, and mass balanced data analysis.  
One specific example is that of flow testing for catalysts which is very process dependent and 
diƯicult to do in a fully automated fashion.  Industry participants mention that experience has shown 
that the equipment necessary to collect such testing data requires significant care and feeding, but 
can be automated to some extent. 

This is the time to rethink how experiments are conducted and, especially, how experimental 
facilities should be built to allow for many, if not all, instruments to be in the same place, automated 
sample handling, remote management of instruments and so on. In addition, achieving a seamless 
flow of information across facilities is challenging yet crucial for developing complex autonomous 
workflows.  This integration of distributed experimental and computation resources is essential for 
eƯective large-scale data management and theory-driven processes. Industrial partners pointed out 
the importance of having automated notice of breaking down of equipment, failure analysis, defect 
detection, and handling of unexpected results. Obviously, this transition requires large investments, 
so the need for de-risking products from autonomous labs was also discussed. Instrumentation and 
software interoperability is critically missing, as each piece of equipment (or software) is developed 
independently from any other and proprietary issues also exist. Vendors should be actively involved 
in addressing interoperability issues and remote operations. In addition, developing common 
protocols, standards, and standard parameters, like already in use in the electronics industry, was 
suggested as a way to substantially help the transition. Lastly, as many experiments require fast time-
scale response, instrument control (real time analysis and feedback) requires direct access to the 
instrument itself and cannot happen through an API, as APIs are usually too slow for autonomous 
operation. Such direct access is not currently available in most cases.  

Better automated, streamlined processes for capturing synthesis and characterization data are 
needed, especially for such a data capture to occur in a secure manner. The need for investments in 
security from the beginning was noted. Currently, no uniform data representation for synthesis and 
characterization data is available. The option to standardize knowledge extraction instead of data 
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format, i.e., to develop a tool able to deal with as many data formats as possible, was suggested as 
a possible solution to overcome the diƯiculty due to the variety and independence of vendors. As an 
example, it was pointed out how LHM moved from Granta to “Material Center.”  

Very few current capabilities were identified for Manufacturing, Certification and End-of-life. These 
capabilities included a few databases (ex. the process parameter monitoring and trending at TAMU 
and the database on shape memory alloys at NASA), statistical models and an example of Research 
Institute (JHU-CMU-led in collaboration with NASA) focused on enabling rapid certification of metal 
parts created using advanced manufacturing techniques. Workforce skills and mid-scale 
manufacturing tools, as well as standardized control messages for instruments were identified as 
most pressing gaps, together with the need for models for recycling pathways, autonomous 
disassembly and frameworks for recyclability and sustainability. The fact that, at the manufacturing 
level, most data and information are proprietary was also identified as a key factor hindering the 
development of autonomous capabilities. Lastly, the pressing need to accelerate certification was 
pointed out, and the hope that autonomous could help in that regard.  

Across the board, a pressing issue holding back the development of autonomous laboratories was 
identified in the lack of a quick path for industry-government collaboration.  Such types of agreement 
currently exist between industry and their supplier, but the standard ways industry and government 
collaborate (NDR, CRADAS and FTO) often require too long a time to be drafted. Issues around 
keeping data private and sharing them, as well as solving IP issues and export controls contribute to 
the challenges in these agreements.  

Currently, most players in the autonomous arena have the tendency to build their laboratories and 
workflows without talking to anyone else. Exceptions do exist (for example, the DOE-led FASST 
initiative which is working across agencies), but there are too few. To advance the field of 
autonomous experimentation quickly and eƯectively in the USA, it has been suggested that what is 
missing is a centered consortium/institution comprised of members from government 
agencies/labs, academia, and industry, where companies making the materials, vendors, and 
industrial users are all represented.  

Lastly, the education of the current and future generation was discussed. While many more students 
are interested in ML now than in the past, in the current workforce we are still missing experts across 
domains/fields. It was also suggested that education should be done in partnership with the private 
sector.  

Functional Ceramics 
Facilitators: Shirley Meng (UChicago), Shijing Sun (University of Washington) 
Participants/Observers Group A:  Chaitan Baru (NSF), Vijay Murugesan (PNNL), Joey Montoya (TRI), Ian 
Foster (Argonne/Chicago), Antti Makinen (ONR), Ankit Agrawal (Northwestern), David Elbert (JHU, 
PARADIM) 
Participants/Observers Group B:  Simon Billinge (Columbia University), Ram Seshadri (UCSB), Eric 
Wang (Samsung), Asra Hassan (ULRI), Tulsi Patel (ExxonMobil Low Carbon Solutions), David Darwin (NSF 
TIP) 
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Current Landscape 
Functional ceramics present unique synthesis and characterization challenges, requiring 
specialized capabilities such as high-temperature processing, ball milling, sintering, and pressing. 
These complexities make the full automation of labs challenging, underscoring the importance of a 
collaborative approach that integrates human expertise, AI, and robotics. Traditionally, there is often 
a delayed discovery of materials’ key functionalities, which often emerge years or decades after the 
initial material synthesis. This delay highlights the need for strategic scientific alignment, where 
autonomous experimentation eƯorts must focus not only on developing advanced infrastructure and 
tools (“hammers”) but also on identifying the right problems (“nails”) that are apt for high-throughput 
and AI methods. Moreover, while there have been successes with automated experiments, gaining 
the trust of domain experts for fully autonomous experimentation remains a challenge. To overcome 
these barriers, it is crucial to foster a three-way collaboration between human scientists, AI systems, 
and robotic technologies, ensuring that the development and application of infrastructures are 
scientifically aligned and trusted by the broader research community. This integrated approach will 
be essential for realizing the great potential of autonomous experimentation in functional ceramics. 

Recent infrastructure innovation for autonomous experimentation has been uneven, with a focus on 
computational discovery, synthetic workflow planning, and high-throughput characterization, while 
areas such as scale-up/manufacturing, certification/qualification, and recycling/end-of-use are 
overlooked. In discovery and experimental design, notable software tools include OpenMSI and 
AlabOS for data handling and experiment orchestration. For synthesis and characterization, key tools 
include the Calphad modeling platform, GEMD data processing format, PIRO synthetic planning 
software, reaction-network, and the PARADIM decision-making platform. Emerging software for 
automated characterization data analysis includes PDFitc, PDFFit, Phase Mapper, Xtal2dos, TRIXS, 
and autoxrd. Additional resources on accelerated materials discovery include the Materials Project 
database, Polybot Echembot at Argonne National Laboratory, the high-throughput synthesis, xrd 
characterization and electrochemistry suite by Eric McCalla at McGill, and the facilities at MDRI-
ULRI. Overall, the current trend of infrastructure innovation highlights three emerging themes:  

 Central Characterization Facilities: Increasing number of beamlines with robotic sample 
handling and big data analytics capabilities, such as synchrotron PXRD and GIWAXS, 
enhancing precision and eƯiciency in material analysis. 

 Community Software: EƯorts in the materials science community to develop open-source 
software infrastructure like the Bluesky Data Collection Framework, addressing challenges 
in experiment orchestration and scheduling. 

 Industry R&D eƯorts: Autonomous materials discovery would attract broad industry 
interests, as exemplified by contributions from Google DeepMind, Microsoft Azure, Samsung 
Advanced Institute and Toyota Research Institute. 

Furthermore, several initiatives in Europe lead this area, such as the BIG-MAP project within Europe’s 
BATTERY 2030+ initiative and the EU-funded VIPERLAB for Perovskite solar research. AMANDA 
manages multiple materials acceleration platforms, while Line1 automates organic solar cell 
manufacturing and characterization. Spain’s ION-SELF project develops an autonomous MAP for 
battery materials, and Finland’s Synbio-MAP by VTT Technical Research Centre of Finland links 
synthetic biology to high-throughput screening and AI-driven modeling for protein-based materials 
and bioplastics. These advancements highlight the growing global landscape of tools for advancing 
autonomous experimentation in functional ceramics. 
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Identified Gaps and Opportunities 

 Autonomous setup for ceramics: The critical role of experimental design, which humans 
excel at, but robots cannot fully replicate, underscores the need for dedicated robotic 
designs tailored for materials scientists, particularly for functional ceramics. 

 Cross-disciplinary collaboration: Incentives are necessary to foster collaboration among 
computer scientists, materials experts, and robotics specialists. Students from these 
disciplines see vast diƯerences in productivity, highlighting the need for better integration 
and cooperation. 

 Private-public partnerships: There is a lack of collaboration between private and public 
sectors, with the industry holding a leading edge in AI/ML. Strengthening these partnerships 
could accelerate advancements in autonomous experimentation. 

 Flexible instrumentation: Many synthesis and characterization tools lack APIs and 
interoperability, creating barriers in integrating the tools with AI/ML algorithms. 

 Autonomous experimentation across scales: In functional ceramics, the method of 
making often diƯers from the method of measurement, requiring diƯerent platforms (e.g. 
thin-film processing vs powder synthesis) for functionality tests.  

 Innovation for manufacturing: Beyond initial materials synthesis, there is a need for 
dedicated focus on scaling up, manufacturing, and recycling processes. 

 Data generation and standardization: The absence of automatic data capture and 
structuring leads to labor-intensive manual organization. Following the FAIR principles and 
standardizing data across instruments are critical for cross-lab validation. Code 
standardization and comprehensive documentation are also essential to lower entry barriers 
for new researchers. 
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 Human-in-the-loop initiatives: Workforce development should focus on training robots to 
assist students rather than the reverse. Domain experts are crucial to ensure the quality and 
relevance of data and scientific conclusions. The strategic collaboration between human and 
artificial intelligence ensures that the results emerging from autonomous discovery are 
useful, reliable, and non-trivial. 

Functional Soft Matter 
Facilitators: Juana Mendenhall (Morehouse College), Martin Burke (UIUC) 
Participants/Observers: Javier Read de Alaniz (UCSB, BioPACIFIC MIP), Bryan Boudouris (University 
of Alabama), Tim Erdmann (IBM Research), Shane Krska (Merck & Co., Inc.), David Rampulla (NIH) 
 
Current Landscape 
The current state of accelerating materials solutions for functional soft matter (FSM) to meet national 
and global challenges consists of little inventory and limited access, both of which represent 
important bottlenecks for advancing the field. Materials innovation platforms (MIP) such as 
BioPACIFIC MIP, GlycoMIP, and the Molecule Maker Lab Institute support chemical and/or 
biochemical synthesis-based workflow protocols which have substantial promise for democratizing 
materials innovation, but targeted infrastructure investment is necessary to transform such 
platforms into broadly accessible resources. Industry and national labs, such as NIST, have 
developed small molecule workflow and living therapeutic foundries for cellular engineering, but in 
general these resources remain challenging to access for outside users. The following suggestions 
have been noted by the working group to fully harness the substantial untapped potential of FSM to 
be accelerated and elevated by autonomous and closed-loop science, and to position the nation for 
global impact. This white paper highlights the need for major infrastructure investments to 
democratize access to functional soft matter innovation, the disruptive potential of forward-thinking 
strategies to better harness the substantial untapped power of autonomous science in the FSM 
domain, and a novel fit-for-purpose “mission-oriented research” model leveraging cross-disciplinary 
expertise, including citizen scientists. 

The current landscape for functional soft matter combines living (bio) foundries, modular chemical 
synthesis platforms, autonomous science platforms, self-driving labs, and infrastructure from 
national labs to provide some support for design and development. But major investments in 
infrastructure and new models for engagement (e.g., mission-oriented research models) are needed 
to democratize access to these powerful resources.  
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 Living Biofoundries: MIPs (BioPACIFIC MIP, GlycoMIP) are research platforms with highly 
integrated research focus teams designed to educate and advance the next generation of 
materials synthesis and characterization. NIST's living measurement system foundry is an 
automated facility that supports high-throughput measurements for engineered cellular 
systems; this design, build, and test model supports machine learning cycles. 

 Modular Chemical Synthesis: Akin to automated peptide and oligonucleotide synthesizers, 
a platform for automated modular synthesis of small molecule-based functional soft matter 
based on MIDA/TIDA boronates has recently emerged. This platform has the potential to 
shatter the synthesis bottleneck that has traditionally limited access to carbon-carbon 
bond-based materials innovation and enable the power of closed-loop and autonomous 
experimentation to be practically interfaced with FSM discovery campaigns.  

 Industrial Autonomous Platforms: Based on more traditional chemical approaches, IBM 
RoboRXN, based on Chemspeed, offers a liquid-handling, partly-sided handling synthesis 
platform connected to LC/MS. Merck PSW-HTE supports small-molecule and peptide 
libraries via experimental design, automation, analysis, and data capture. Self-driving labs, 
such as the Emerald Cloud Lab and Carnegie Melon Cloud Lab, also provide access to 
remote synthesis and telerobotic capabilities 

 National Lab Autonomous Infrastructure:  Automated platforms at Brookhaven for SAXS 
data and the autonomous chemistry labs at Oak Ridge provide examples of chemical 
automation in practice.  

 Software Packages: Recent reports of one-shot LCMS purification/characterization 
platforms, such as the one recently reported at U. Toronto, have the potential to address 
characterization bottlenecks to enable rapid cycling through AI-guided closed-loop 
campaigns.  
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Identified Gaps and Opportunities 
The call for action to improve the current state of functional soft matter toward accelerated, 
autonomous, and more democratized science is noted below. Of resounding concern was the need 
to broaden access to innovation-enabling infrastructure and ensure that quantifiable metrics 
focused on mission-driven projects using a fit for purpose model resonated with the group. This 
model supports mission-driven directives using team science with a finite timeline to achieve 
deliverables. 

 Scope, Scale, Sustain: Broad support was voiced for investing in infrastructure to create 
multidisciplinary Centers of Emerging Chemical Technologies - dedicated research centers 
that bring together experts from various fields to partner with external innovators to advance 
and broaden access to FSM innovation projects. It was specifically mentioned that we need 
a CHIPS Act for small molecule synthesis. It was further recommended that the nation 
develop multi-directional partnerships between academic institutions, industry leaders, 
industry manufacturers, national labs, and policy stakeholders focused on mission-oriented 
research projects. Also highlighted was the need to share knowledge and resources and 
implement best practices and strategies for automated functional soft matter. 

 Implement a well-defined materials database for all classes of materials that is streamlined 
and easy to populate and machine readable, with nomenclature covering the intersection of 
this new field.  

 Standardization of workflow for synthesis and additive manufacturing: Improved liquid-
sample handling and the need for reliable and scalable quantifiable measurements are 
desired.   

 Hardware: There is a lack of transparency from equipment manufacturers in terms of 
automation and data sharing that prevents interoperability and ability to leverage emerging 
techniques necessitating a means by which to have the commercial, standard lab equipment 
available in some kind of “FAIR-like” manner. 

 High Throughput Characterization and Testing: recommendations to streamline the 
workflow process from synthesis to characterization and testing would optimize this process 
for translational applications.  

 Data Storage and Security: Secure funding from public and private sources to support 
multidisciplinary research and development eƯorts. 

 Artificial Intelligence and Machine Learning Models: Data scientists who understand 
scientific jargon to support synthesis, characterization, and translation are needed. 

 Training, Education, and Workforce Development: There is a major need for workforce 
development in this emerging intersection between AI, automated synthesis, and automated 
testing. Emphasis was placed on recommending specialized training programs (associate 
degrees, certificates, and post-bac programs) to equip technicians, researchers, and 
engineers with the skills needed for FSM development and deployment.  

 Technology Transfer: Further connect technology transfer and commercialization to help 
facilitate the translation of research findings into commercial products through partnerships 
and licensing agreements. 

Broad support was voiced regarding the need to invest in infrastructure that provides broad access 
to FSM innovation. It was also specifically mentioned that these investments should be guided by a 
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fit-for-purpose model ensuring that FSM development is aligned with specific application needs and 
regulatory requirements. This model involves  

 Targeted Research and Development: A Mission-Oriented Research model, focusing on key 
application areas such as drug delivery, diagnostics, and sustainable materials  

 Interdisciplinary Teams: Establishing teams with expertise across the relevant disciplines to 
foster innovation and address complex challenges; Including supported access to highly-
enabling infrastructure that eliminates synthesis bottlenecks are recognized as key elements 
for the success of such an approach  

 Iterative Design Process: Employing a cyclical process of design, testing, and refinement to 
achieve optimal material performance 

 Regulatory Alignment: Ensuring that FSM products meet regulatory standards and safety 
requirements from the early stages of development 

 Stakeholder Engagement: Involving industry partners, regulatory bodies, and end-users 
throughout the development process to ensure relevance and acceptability. 

Recent breakthroughs in AI, automated platforms for the synthesis of carbon-carbon bond-based 
materials, advances in automated testing and characterization have synergistically yielded a historic 
opportunity to revolutionize FSM innovation, and for the United States to lead this burgeoning 
Molecular Industrial Revolution. Development of systems and multidisciplinary teams that drive 
Mission-Oriented Research have the potential to disruptively shift the design, engineering, and 
translation of FSM research and democratize FSM innovations. Adopting a fit-for-purpose model and 
fostering cross-disciplinary collaborations can accelerate the innovation and deployment of FSM 
synthesis, characterization, and technologies at scale. However, realizing all of this tremendous 
potential will require strategic investments in infrastructure that shatter synthesis bottlenecks and 
bring the power of closed-loop/autonomous research to a broader scope of the scientific and 
broader communities.  

Functional Semiconductors 
Facilitators: Joan Redwing (Penn State, 2DCC), Eric Stach (UPenn) 
Participants/Observers: Milad Abolhasani (NCSU), Rick Gottscho (Lam Research), Carol 
Handwerker (DOC), Theresa Mayer (CMU), Mike McKittrick (CHIPS R&D), Claudia Mewes (DOE), Eric 
Miller (DOE), Dana Weinstein (OSTP), Branden Brough (NNCO), Ben Mintz (ORNL), Hal Finkel (DOE), 
Quinn Spadola (NNCO) 
 

Current Landscape 
Semiconductor manufacturing has been at the forefront of automation for decades driven by 
inherent demands for high throughput, yield, quality and reliability. The emergence of highly 
automated wafer fabs with robotic wafer-handling systems, advanced process control, high 
throughput metrology and integrated cyberinfrastructure provide a compelling platform for 
advanced decision-making technologies that incorporate machine learning and artificial 
intelligence to optimize workflows and process outcomes. Significant deviations from process 
parameters, however, still rely on human intervention, failure analysis and troubleshooting which 
reduce productivity. Similar considerations apply for laboratory scale infrastructure for 
semiconductor materials which, while not as highly integrated as production fabs, still commonly 
employ automation and adaptive control. Autonomous instrumentation, on the other hand, requires 
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the ability to make complex decisions at the timescale of the process employed (e.g. deposition, 
epitaxy, etching) based on limited data from real time metrology techniques.  
 
 

 

Identified Gaps and Opportunities 

 Autonomous instrumentation for thin films materials discovery: Autonomous set-ups 
have been demonstrated for solution-based synthesis and to some extent for powder-based 
synthesis which are of limited applicability to semiconductors that require ultra-high purity 
and high vacuum processing environments. Sources available on tools are limited, 
constraining options for high-throughput discovery of new materials and complex multi-
material systems and devices. New instrumentation designs for high throughput multi-
source thin film processing with integrated in situ metrology are needed to accelerate 
discovery. 

 Innovation for manufacturing: Semiconductor processing tools used in manufacturing 
incorporate aspects of automation (e.g. sample handling, in situ metrology, statistical 
process control) but rely on humans for decision making when processes deviate beyond 
acceptable levels. Digital twins are needed which incorporate ML/AI enabling integration of 
autonomous process control and troubleshooting. 

 Multi-scale physics-based models: Approaches are needed to capture non-equilibrium 
and kinetic processes inherent to materials synthesis and nanofabrication to predict 
resulting composition, phase, microstructure and topography, specifically as these relate to 
materials and device performance and durability. Models must consider macroscale 
processing geometry which varies from vendor to vendor and also be translatable from lab-
scale to manufacturing-scale equipment. Digital twins can also enable further physics-
based modelling for materials qualification and development. 
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 Advances in metrology: This area includes in situ techniques and high throughput 
spatiotemporal methods to meet the rapid feedback timescales required for autonomous 
operation.  

 Metadata and data standardization: Semiconductor manufacturing utilizes a very large 
number of diƯerent tools, from multiple vendors, often with proprietary data formats and 
limited access to metadata. Open data approaches would enable broader adoption of AE 
methods. 

 
Significant additional information of key outcomes for the Functional Semiconductor group discussion can 
be found in Appendix D. 

Challenges and Considerations 
While this report baselines existing AMII capabilities and identifies gaps across material systems, 
AMII is still a relatively nascent field of practice. There are still several challenges and important 
considerations to building a robust community of practice and develop scalable AMII that is 
accessible to the broader community. 

To successfully implement and realize impactful discoveries from AMII will require bringing together 
a diverse set of relevant stakeholders. Consortia models were brought up throughout the workshop 
for consideration, as they can help bring together government funders, private industry, and 
researchers to coordinate eƯorts, pool resources, and realize greater returns from investments. 
Consortia can help align government programs towards applied research that is relevant to critical 
challenges domestic industry faces. Collaborative, pre-commercial research can help demonstrate 
the value of AMII to practical research questions, providing value to various types of consortia 
members. Consortia can also act to convene practitioners and bring together a community of 
practice around the various aspects of development still needed to realize AMII. While other 
countries have established consortia for autonomous materials discovery, the United States today 
does not have a comprehensive consortium for AMII. 

One key aspect of AMII development is the tooling required for the generation and integration of 
significant amounts of data, the upgrading and digitalization of scientific hardware, and orchestration 
and management software specifically geared towards AMII. While diƯerent researchers have 
developed their own implementations, open-source software and hardware can help accelerate 
adoption of AMII components and lower the barrier to entry for researchers interested in 
implementing AMII. Open-source adoption can also enhance standardization, modularity, and 
reproducibility of AMII infrastructure and results. Promoting adoption of these best practices can 
help accelerate the iteration cycles for improving AMII, reduce the timelines to further deployments 
of AMII platforms and help realize breakthrough innovations more quickly. 

Another key consideration for AMII development is the workforce behind it. Implementing AMII will 
require bringing together a diverse array of skills: from building AI models to support autonomous 
platforms, to developing software orchestration and data management, to hardware and firmware 
maintenance and operations, to domain knowledge of scientific problems. Building a skilled 
scientific workforce capable of developing and working with AMII will be critical to realizing success 
from AMII investments. For national security positions, an AMII workforce that includes U.S. citizens 
will be critical. Conveniently, many of these skills are already recognized as critically necessary by 
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the broader scientific community – AMII can serve as a useful leverage point to accelerate 
educational development in these critical skillsets. As discussed previously, AMII can also enable 
researchers to spend more of their time on scientific thinking and discovery and reduce the time 
spent on menial tasks.   

Finally, as autonomous platforms continue to expand and the AMII becomes more accessible, 
ethical, safety, and security considerations will become increasingly important. For classified, 
biologically hazardous, and other national security related research, traditional frameworks of risk 
assessment and assurance may need to be modified to accommodate autonomous platforms. Lab 
safety practices will have to incorporate robotic sensing and automated equipment, as well as 
notification and safety protocols for unsupervised experiments. Ethical guidelines for scientific 
research and disclosure may also evolve. 

Conclusion 
The Materials Genome Initiative (MGI) Workshop “Accelerating Materials Solutions to Meet National 
and Global Challenges” brought together stakeholders to help understand the landscape of the AMII, 
including the existing infrastructure and the gaps needed to advance Autonomous Experimentation 
(AE) for materials R&D. This report should provide a useful baseline for researchers, policymakers, 
and program managers looking to develop eƯorts supporting the AMII. 

Overall, AE is at an early stage of development, but the community has made key 
demonstrations of accelerated research and productivity.  

The figures below illustrate the output of the analysis of the input received for all 7 domains 
considered during the workshop. Clearly diƯerences in capabilities can be seen, but there are also 
some trends that emerged. For example, there are generally limited capabilities identified in the 
certification/qualification and recycling/end of use categories. For most materials domains, the 
participants identified more resources in the discovery and experimental design, synthesis, and 
characterization categories, and also in scale-up and manufacturing, especially for the ceramic 
materials domain. This workshop exercise and the data captured within the appendices serve as a 
benchmark of the existing AMII and will help inform continued development in this area.  
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These starburst charts illustrate the input received for each of the materials domains during the 
breakout sessions, as described in more detail in the Workshop Description. Larger shaded radius 
indicates more existing resources identified during the workshop landscaping activity. 
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There were common themes for gaps in the AMII across the breakout sessions and panel discussion 
from the workshop participants that are highlighted here. 

Common Gaps in AMII across Materials Domains: 

 Significant infrastructure for autonomous experimentation for materials R&D 
 Workforce development for AI-Driven AE for materials research 
 Automated experimentation hardware for 

o Synthesis 
o In-line & in situ characterization 
o Testing (mechanical, electrical…) 
o Sample handling/exchange between instruments 

 AI-driven autonomous decision methods tailored for materials research 
 Integration of modeling & simulation into AE workflows 
 Software for autonomous workflows and hardware interfaces 
 Standardized data structures that improve R&D workflows (FAIR) 
 Improved sharing and access to non-proprietary results & data 
 Safety and security for laboratories, data 
 Shared/centralized facilities to improve access 
 Integration of digital manufacturing, digital twin, and scale-up for technology transition 
 Consortia or Public Private Partnerships to leverage strengths of government, industry and 

academia 
 

Beyond these needs, the appendices contain a valuable and insightful trove of detailed information 
and observations from both the working sessions and data gathered in preparation for the workshop. 
 
In closing, the organizers are grateful to the workshop participants who have provided very important 
contributions to this assessment of the AMII. It is expected that this report will serve as a valuable 
resource to inform future efforts in autonomous experimentation. 
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Appendices 
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B. Attendee List 
First Last Institution / Organization Group 
Milad Abolhasani North Carolina State University Functional Semiconductors - A 

Ankit Agrawal Northwestern University Functional Ceramics - A 

Jeff Aguiar Lockheed Martin Functional Metals 

Chaitan Baru National Science Foundation 
(NSF) 

Functional Ceramics - A 

Simon Billinge Columbia University Functional Ceramics - B 

Cosima Boswell-Koller National Science Foundation 
(NSF) 

 

Bryan Boudouris University of Alabama Functional Soft Matter 

Brad Boyce Sandia National Labs Structural Metals 

Branden Brough National Nanotechnology 
Coordination Office (NNCO) 

Functional Semiconductors - A 

Keith A. Brown Boston University Structural Soft Matter 

Marty Burke University of Illinois at Urbana-
Champaign 

Functional Soft Matter 

David Darwin National Science Foundation 
(NSF) 

Functional Ceramics - B 

Sanket Deshmukh Virginia Tech Structural Soft Matter 

Andrew Detor Defense Advanced Research 
Projects Agency (DARPA) 

Structural Metals 

James Dorman U.S. Department of Energy (DOE) Structural Ceramics 

David Elbert Johns Hopkins University Functional Ceramics - A 

Tim Erdmann IBM Research Functional Soft Matter 

Hal Finkel U.S. Department of Energy (DOE) Functional Semiconductors - A 

Eric Forsythe National Institute of Standards 
and Technology (NIST) 

 

Ian Foster Argonne National Laboratory & 
University of Chicago 

Functional Ceramics - A 

Lisa Friedersdorf White House Office of Science and 
Technology Policy (WH OSTP) 

 

Eddie Gienger Johns Hopkins University - Applied 
Physics Lab 

Structural Metals 

Mike Glavicic Rolls-Royce Corporation Functional Metals 

Rick Gottscho Lam Research Functional Semiconductors - A 

Chris Haines U.S. Army DEVCOM - Army 
Research Lab (ARL) 

Structural Ceramics 

Leslie Hamilton Johns Hopkins Applied Physics 
Laboratory 

Functional Metals 
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Carol Handwerker Department of Commerce (DOC) Functional Semiconductors - A 

Robert Hart U.S. Army DEVCOM Ground 
Vehicle Systems Center (GVSC) 

Structural Metals 

Asra Hassan Underwriters Laboratories 
Research Institutes (ULRI) 

Functional Ceramics - B 

Jae Hattrick-
Simpers 

University of Toronto Structural Metals 

Aisha Haynes Office of the Under Secretary of 
Defense, Research and 
Engineering (OUSD(R&E)) 

Functional Metals 

Germano Iannacchione National Science Foundation 
(NSF) 

 

Sergei Kalinin UT Knoxville  Structural Ceramics 

Ibrahim Karaman Texas A&M University Structural Metals 

Eugenia Kharlampieva National Science Foundation 
(NSF) 

Structural Soft Matter 

Philseok Kim Advanced Research Projects 
Agency - Energy (ARPA-E) 

Functional Metals 

Alex Klironomos National Science Foundation 
(NSF) 

Functional Semiconductors - A 

Shane Krska Merck & Co., Inc. Functional Soft Matter 

Alexis Lewis National Science Foundation 
(NSF) 

 

John Lockemeyer Shell Global Solutions U.S., Inc. Functional Metals 

Antti J Makinen Office of Naval Research (ONR) Functional Ceramics - A 

Benji Maruyama Air Force Research Laboratory 
(AFRL) 

 

Theresa Mayer Carnegie Mellon University Functional Semiconductors - B 

Mike McKittrick CHIPS R&D Functional Semiconductors - B 

Juana Mendenhall Morehouse College Functional Soft Matter 

Shirley Meng University of Chicago Functional Ceramics - A 

Claudia Mewes U.S. Department of Energy (DOE) Functional Semiconductors - B 

Eric Miller U.S. Department of Energy (DOE) Functional Semiconductors - A 

Stu Miller Underwriters Laboratories 
Research Institutes (ULRI) 

Structural Ceramics 

Ben Mintz Oak Ridge National Laboratory Functional Semiconductors -B  

Dan Miracle Air Force Research Laboratory 
(AFRL) 

Structural Metals 

Joey Montoya Toyota Research Institute Functional Ceramics - A 

Rob Moore Oak Ridge National Laboratory Functional Metals 

Vijay Murugesan Pacific Northwest National 
Laboratory 

Functional Ceramics - A 
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Vicky Nguyen Johns Hopkins University Structural Soft Matter 

Chinedum Osuji University of Pennsylvania Structural Soft Matter 

Patrice Pages National Nanotechnology 
Coordination Office (NNCO) 

 

Harry Partridge National Aeronautics and Space 
Administration (NASA) 

Structural Metals 

Tulsi Patel ExxonMobil Low Carbon Solutions Functional Ceramics - B 

Victor Pugliano Department of Defense (DOD) 
 

Dave Rampulla National Institutes of Health (NIH) Functional Soft Matter 

Javier Read de Alaniz UC Santa Barbara Functional Soft Matter 

Joan Redwing Penn State University Functional Semiconductors - A 

   Unable to attend 

John Schlueter National Science Foundation 
(NSF) 

Structural Soft Matter 

Joshua Schrier Fordham University Structural Ceramics 

Ram Seshadri UC Santa Barbara / BioPACIFIC 
MIP 

Functional Ceramics - B 

Quinn Spadola National Nanotechnology 
Coordination Office (NNCO) 

Functional Semiconductors - B 

Eric Stach The University of Pennsylvania  Functional Semiconductors - B 

Shijing Sun University of Washington Functional Ceramics - B 

Mitra Taheri Johns Hopkins University Functional Metals 

Francesca Tavazza National Institute of Standards 
and Technology (NIST) 

Functional Metals 

Rich Vaia Air Force Research Laboratory 
(AFRL) 

Structural Soft Matter 

Eric Wang Samsung Semiconductor, Inc. Functional Ceramics - B 

Jim Warren National Institute of Standards 
and Technology (NIST) 

 

Dana Weinstein White House Office of Science and 
Technology Policy (WH OSTP) 

Functional Semiconductors - B 

Charles Yang U.S. Department of Energy (DOE) 
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C. Landscape Activity: Detailed outcomes 
The inventories and gaps discussed below are derived from inputs collected at the workshop based on the 
knowledge and experiences of diƯerent participants. They are not comprehensive and do not reflect the 
opinion of all attendees. Also, the specific resources listed throughout the document were identified by the 
participants and should not be taken as an endorsement in any way or considered to be complete. The 
following images reflect the content gathered from the sticky notes for each of the categories discussed 
during the breakout sessions, essentially the digitization of the wall-sized posters at the meeting. 
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Structural Metals 
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s tructural concrete

LCA  tools



 

63 
 

Structural Soft Matter  
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Synthesis

CR IP T G ly coM IP  at V T B eckman ins titute 
autonomous  
materials  sy s tem 
group

UM as s  Lowell 
poly mer 
proces s ing line

CHIM A D P OLY B O T  at A NL M ids cale 
s y nthes is  of 
materials  (K g-
s cale)

NIS T  X-ray  data 
modeling

NS F  B ioP A CIF IC 
M IP  at UCS B

microtiter plates lack of 
interoperable  
databas es , 
s olution 
properties ,

Cloud lab at CM U data output and 
analy s is  tool 
(V M D, LA M M P S , 
NA M D, 
G R O M A CS , M D 
analy s is )

P eter B eaucage's  
formulis tics  bot: T he 
NIS T  A utonomous 
F ormulation 
Laboratory — A cceler
ating Liquid 
F ormulation and 
R eaction Lands cape 
E x ploration with A I 
and X-R ay /Neutron 
S cattering

poly mer s olution 
phas e behavior 
prediction

lack of trusted 
databas e
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Characterization

NIS T  X-ray  data 
modeling

V M D P eter B eaucage's  
formulis tics  bot: 
T he NIS T  
A utonomous  
F ormulation 
Laboratory — A ccel
erating Liquid 
F ormulation and 
R eaction 
Lands cape 
E x ploration with A I 
and X-R ay /Neutron 
S cattering

S O F T -A E  NR T  @  
P enn

Dogbones

Lack  of 
interoperable 
databas es

LA M M P S P oly bot (A NL) CO M P A S S  S T C 
@  M ichigan

A utomated 
T esting: T A  
Ins truments
Ins tron
R heology  @  
NN???

S olution properties NA M D B E A R  (B ay es ian 
ex perimental 
autonomous  
res earcher) K eith 
B rown

G R O M A CS NS F  B ioP A CIF IC 
M IP  (UCS B )

M DA naly sis CF N / CM S  @  
NS LS II / B NL (X-
ray  
characteriz ation)

P oly mer s olution 
pahse behavior 
prediction (A F R L )

Lack of trus ted 
databas e
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S OF T -A E  NR T  
@ penn

B E A R  (B ay es ian 
ex perimental 
autonomous  
res earcher) K eith 
B rown

COM P A S S  S T C@  
M ichigan

A R E S  OS  2.0 
additive poly mer 
printing

automated tes ting  
(T A  instrument –  
rheology , Instron)

s tandard modular 
work  flows  for 
proces s ing his tory

A mount/time/nece
s sity  s cale to 
quantify  
proces s ing

lack of facilities

Scale-Up / Manufacturing
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lack of .. 
properties  coupled 
with in-line 
metrology  , 
reference 
materials  (models )

hig h throug hput 
adhesive testing 
(Dupont)

lack of 
unders tanding  of 
long term ag ing

R efernce M aterials  
(Data &  M odels ) 
are needed

Certification / Qualification
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Recycling / End-of-Use

 life cy cle analy sis  
in the vein of M G I 
(data driven)

M aterials  
architecture by  
adaptive 
proces s ing

how to separate 
different chains in 
a mix ture

how to control the 
chain s iz e during  
degradation



 

68 
 

Functional Composites 
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Discovery & Experimental Design

P roces s modeling 
and F E  models 
are ty pically  at 
macro-s cale and 
are…  from the 
microscale

fix tures are not 
s tandardiz ed or 
widely  agreed upon, 
making automation 
difficult
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Synthesis

Integ ration of 
proces s  modelling  
and abnormalities  
defers into 
multiscale models

A S T M  s pecimens 
are not eas ily  
automated 
(manual prep, 
tabbing , etc)
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ex perimental 
res ults  are subject 
to interpretation 
(i.e. a macrolevel 
measurement is  
used to es timate 
micro level 
material 
phenomena/failure

Characterization
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need for 
correlation 
between lab s cale 
(flat coupons) and 
real 3D 
geometries

*Compos ite 
materials  are 
formed with final 
part not as  bulk  
cons tituents

Scale-Up / Manufacturing
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Certification / Qualification
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Recycling / End-of-Use

what are the 
economics  of 
recy cling and how 
does performance 
compare to virgin 
materials
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Functional Metals 

  

M
od

el
s

D
at

a 
&

 In
fo

rm
at

io
n 

H
an

dl
in

g

A
ut

no
m

ou
s 

In
st

ru
m

en
ta

tio
n

So
ft

w
ar

e

Sa
m

pl
e 

H
an

dl
in

g 
/ 

H
an

do
ff

D
ec

is
io

n 
To

ol
s

Discovery & Experimental Design

Generative AI 
models – PCGCM

Materials center 
model center

Digital twins of 
neutron 
beamlines

Grain growth PRO CAST

CDVAE
Materials data 
facility MDF

GAP: real time 
control of 
instruments, 
open system

Bulk residual 
stress

COMSOL 
multiphases

Software thermo 
calc CALPHAD

Data and Info 
handling: Data 
analysis, data 
reporting

“National archive 
of materials data”

Computational 
fluid dynamics

3DX/3D systems

Grain models Discovery + Exp Crystal plasticity ASTM handbooks

EMAG/additive 
tools

Data 
management: 
formatting, data 
collection

Phase 
transformation

CALPHAD

COMSOL

Data 
management: 
develop new 
standards for 
data 
interconversion 
from various 
sources 

Suite of codes for 
BAYESIAN 
optimization and 
neural nets for 
generic 
experimental 
workflows

Multiwork flow 
orchestrator for 
coordinating 
experiments 
across different 
facilities

QUESTEC
Facility API for 
HPC (i.e. frontier 
supercomputer)

GAP: legal 
implication of 
mining for 
retrieval 
literature 
(Elsevier lawsuit) 

ML algorithms 
based on cause + 
effect 
relationships

GAP: develop 
physics ML 
models to make 
intelligent 
decisions with 
sparce data 

GAP: software 
that works with 
heterogeneous 
data to inform 
decisions 
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Synthesis

Generative 
models for 
materials 
structure

Microsoft cloud 
resource

Reliability issues

GAPS: synthesis 
software for 
metals: 
MARMOT/BISON, 
Procast, 
Phasefield 
missing property 
prediction 

Mixing 
equipment 
especially for 
hazardous 
materials (e.g HF)

GAP: decision 
tools lack 
connection to 
critical materials 
and supply chain

Magnetic 
properties

Forum pass
Access to 
programming

GAP: large 
language models 
for translating 
spreadsheets, 
images, pdfs to 
interoperable 
data file.

Sample transfer 
robotics e.g. 
inter/out of very 
hot ovens (HSSE 
concerns)

Synthesis GAP: 
little real time 
adaption

Magnetic 
saturation 
prediction

MAI hub-AFRL

Autonomous 
flow reactors 
with multimodal 
characterization 
in situ

GAP: 
Interoperability 
of software

Inability to make 
real time 
decisions at 
relevant scales

Multitask models 
+ prediction – 
JHU/APL/RAD

Autonomous 
chemistry lab 
with multimodal 
characterization 
tools

Synthesis GAP: 
Hardware/Softwa
re interfaces for 
real time control 

ALM software to 
model defects in 
ALM

U. Toronto; 
Combinatorial 
films high 
throughput

ORNL

Intersect 
initiative for 
workflows

Autonomous 
additive 
manufacturing 
for metals and 
composites

Synthesis: 
weighing 
instruments

Synthesis: flow 
testing 
equipment, gram 
+ mggram scale



 

76 
 

 

M
od

el
s

D
at

a 
&

 In
fo

rm
at

io
n 

H
an

dl
in

g

A
ut

no
m

ou
s 

In
st

ru
m

en
ta

tio
n

So
ft

w
ar

e

Sa
m

pl
e 

H
an

dl
in

g 
/ 

H
an

do
ff

D
ec

is
io

n 
To

ol
s

Characterization

AT SCALE – 
autonomous 
MBE DED
Microscopy 
Sputtering

GAPS: real time 
feedback, no 
standard 
knowledge 
extraction, no 
new 
standardization 
for interfaces, 
legacy systems: 
controls, 
interoperability

Autonomous 4D-
STEM Matl’s 
characterization   

Digital twins of 
4D-STEM

Optimization + 
robotic arm for high 
throughput 
characterization

EBSD

Autonomous 
instrumentation, 
vendor-supplied 
equipment: 
customizability, 
maintenance, 
troubleshooting
 interruption of 
workflow 
(depends on 
vendor response)

Autonomous 
neutron beamlines

DARPA METALS AI 
driven feedback 
loop, in-line 
automated 
testing

X-ray/Neutron 
diffraction

Characterization: 
thermal analysis, 
microscopy

wavelength 
dispersing 
spectroscopy

GAP: novel 
characterization 
methods that 
leverage strengths 
of 
robotics/autonomy 
and maximize info

energy dispersing 
spectroscopy

SEM, TEM

Calorimetry

Optical 
characterization

blue light 
dimensional



 

77 
 

 

M
od

el
s

D
at

a 
&

 In
fo

rm
at

io
n 

H
an

dl
in

g

A
ut

no
m

ou
s 

In
st

ru
m

en
ta

tio
n

So
ft

w
ar

e

Sa
m

pl
e 

H
an

dl
in

g 
/ 

H
an

do
ff

D
ec

is
io

n 
To

ol
s

Scale-Up / Manufacturing

Lack of workforce 
skills

Process 
parameter 
monitoring + 
trending

Gap: lack of 
midscale 
manufacturing, 
lack of 
producibility

GAP: Standardize 
messages for 
controlling 
instruments + 
resources from 
different vendors 

Lack of tools IT Texas A@M

IT NASA Database 
on shape 
memory allows
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Certification / Qualification

Statistical models Data handling NASA

OUSD, JHU/APL, 
digital calibration 
 experimental 
+ modeling 
combined, new 
efforts starting

GAP: 
Consolidated 
standardized 
databases and/or 
ways to 
access/leverage 
heterogeneous 
data 

CMU/JHU digital 
twins

No tools exist

Hardware + 
software to 
enable 
characterization/
decision making 
at speed  

ASIC?

FPGA?
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Recycling / End-of-Use

Models to predict 
recycling/reuse 
pathways at 
beginning of 
materials 
lifecycle 

Autonomous 
disassembly of 
end-of-life 
components 
recycling prep 

Frameworks to 
understand 
recyclability/sust
ainability of 
materials 
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Discovery & Experimental Design

Model emergent 
property capture

GAP: 
standardized 
networking 
policies for free 
flow of 

A-LAB (Berkeley)
Materials project 
LBNL lead

Need to engage 
human/machine 
partnering 
community 

Mat-discover, 
Mat-bench 
geometries

Functional 
ceramics 
discovery: 
multiscale 
modeling of 
carbon materials 
and find 
suitability of 
carbon material 
attributes for the 
application of 
batteries and 
carbon capture

Datatractor.org Ceder group CALPHAD

DATA curation: 
who pays, who 
maintains, who 
safeguard 

BraggNN tools for 
AI in the loop 
feature detection 
and analysis of X-
Ray data

New sorbents for 
lithium 
extraction 

PARADIM 
(JHU/Cornell)

Solid state 
synthesis

Thermocalc + 
others

Funding/access ANL

PNNL data and 
models solid 
phase processing 
SPPS; initiative

Project 
CHAMELEON

European 
material 
automation 
project: BIGMAP

NIST/MARDA 
working group

Interactions 
between 
databases? META 
data

Role of human

Google/ 
Deepmind

API data 
interoperability

Viper lab

Argonne 
Autonomous 
research labs 
AARL- many 
robotic 
instruments for 
materials and Bio

Microsoft AZURE 
paid service

Auto PERO SOL

WEI (workflow 
execution 
infrastructure) 
for universal 
access and 
reusable flows

AMANDA – line1

Functional 
ceramics 
discovery: new 
membranes for 
brine purification

ION-SELF
Need to engage 
autonomy 
community 

SynBio- MAP

AMDEE (JHU)

AI driven 
integrated and 
automated 
materials design 
in high 
throughput 
integrated OPA 
datahub and 
streaming 
science data
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Synthesis

Phase diagram 
network analysis

ESAMP
Autonomous 
solid dispensing 
Chemspeed

PNNL
PNNL ARES
robotics labs

CAMD

Reaction network 
analysis

Published data 
with DOI 
(DATA.PARADIM.
org; 
Portal.Data.Parad
im.org)

Powder dose 
(Crystal)

Institute center 
for AI CTCI

AT-SCALE
autonomous 
characterization

Functional 
ceramics 
synthesis 

GAPs: 
Synthesizability; 
Transition to 
automation

Translatable 
workflows

SAMSUNG LAB: 
mixing powders, 
X-Ray 
characterization

piro.matr.io

Design of novel 
processes for 
lignin upgrading 
for novel 
catalysis 
materials and 
properties

Thin film 
deposition data 
(2DCC.org; 2DCC 
MIP)

Sample handling  ARROWS

MDRI-UCRI AFLOW++

Rapid microwave 
synthesis

Generalized 
automation 
Vendors 
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Characterization

Functional 
ceramics 
characterization

MDRI-UCRI PNNL ATSCALE
Phase mapper 
xlal2do5

Thermofisher 
scientific 
laboratory 
automation (GC, 
sample array)

Lazer Shock impact 
lab (JHU)

predict thermal 
and oxidative 
stability of amines 
in CO2 capture

McGill University 
Eric McCalla H-T 
electrochemistry 
cathode Li-ion 
battery

Workflow + 
integration 
Operando synthesis 
+ analysis  theory 
+ simulation

AI crystallography
MTI desktop 
collaborate robot

Automated 
metadata

Functional 
ceramics 
certification/qual
ification 
simulations of 
long term battery 
performance, 
especially impact 
of impurities in 
cathode and 
anode materials 
to better tailor 
product 
specification and 
qualification 

Rapid screening 
TGA

Incremental XRD 
clustering; Fuzzy 
XRD clustering

Universal robots
Uncoupled 
processing

Characterized 
defects disorder at 
scale/speed 

EBSD – indexing 
PADNet-XRD

COBOT UR loe

Stream processed 
high throughput 
data reduction with 
visualization

Advanced 
characterization 
XRD

Variable temp 
XRD

In site/In line 
analysis techniques 
for carbon 
nanotube synthesis 

Variable 
temperature XRD, 
Gas handling
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(For Batteries) 
Byte Rat

Lack of data
SAMSUNG 
autonomous lab

Digital twin
Toyota 
Production 
System

Pilot Line, Bridge 
to Industry

BEEP

Clariant  High 
throughput 
experimentation 
 CLARITY 
data to visualize

EU battery 2030+
Error correction, 
safety: Lazer, X-
Ray, H2S

Data structure in 
the way we can 
communicate in 
industry 

Functional 
ceramics scale-up 
paired with … on 
whether this 
material could be 
practically made 
and at the cost of 
materials

GAP: Seamless 
authorization and 
authentication

AI to cross-scales, 
from lab to pilot 
plant

SPEED

Scale-Up / Manufacturing
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Certification / Qualification

NASA STRI 
IMQCAM digital 
twin for cert/qual 
MAM

Software/code/d
ata 
standardization, 
reusability, and 
documentation
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Recycling / End-of-Use

LFP battery life 
prediction

Recycle vs 
regenerate vs 
second use 
sorting by AI

Degradation 
prediction
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Functional Soft Matter 
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Discovery & Experimental Design

Models of failed 
experiments – 
database of best 
and not so best 
practices

BioPacific MIP, 
LIMS/ELN, data 
information

Adaptive robotic 
work that adapts 
both function and 
data caption

Need to engage 
autonomy 
community

GAP: AI-ready 
data: definition 
development, 
deployment  

ML informed 
modeling

AI ML trained 
models

Visualization 
technology

Acceleration 
consortium at U. 
Toronto

Non-aqueous 
synthesis and 
polymerization 

LAM powered 
multimodal 
literature 
research tools 
digesting millions 
of documents to 
guide R&D 
literature study

Fit-for-purpose 
models and 
interoperability 

Image 
segmentation 
and pattern 
recognition

Data in the 
chemistry 
domain is not 
modular: thus, 
not friendly to AI

CITRINE/PARADI
M, linked data 
knowledge, 
Graph GEMD

We need to 
modularize  

Mission oriented 
research model 

Inconsistent 
capture of 
chemical reaction 
data; lack of 
standardization; 
poor 
reproducibility 
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Synthesis

Protein synthesis

MERCKPSW-THE 
small molecules, 
peptides, 
conjugates, 
internal funding

IBM Robo RXN
Digital Molecule 
Maker @ MMLI

GlycoMIP, 
glycoproteins

The cost of 
moving from 
human in the 
loop to fully 
automated 
workflows 

Chemspeed Contractual

Liquid handling 
partly handling 
synthesis 
platform

Proprietary 
instrument 
software, 
filetypes

GAP: solid 
sample handling 
similar gap with 
heterogeneous 
mixtures 

leaving 
Biofoundry

Designs 
automation 
experiments

Connected with 
NC/MS

lack of flexible 
API’s

Need low 
cost/accessible 
integration 
automation that 
can pass samples 
between 
different 
solid/liquid 
dispensers, 
reactors, and 
other equipment 

BioPacific MIP NCSA
Based on 
Chemspeed

Modular small 
molecule 
synthesis with 
MIDA-TIDA 
boronates

Lack of a 
comprehensive 
data model to 
capture full 
capacity of 
materials 
structure + 
properties, the 
experimental 
preparation and 
METAdata.  

iBioFab@uiul

Retrosynthesis 
models – Bartosz 
Jrwbowski one of 
global pioneers

Poorly defined 
synthetic 
procedure in the 
most current 
literature

Standardization 
of workflow for 
synthesis 

IBM RXN 
Retrosynthesis 
and forward 
synthesis model 
framed on patent 
data (and enzyme 
in separate 
model)

Multiple 
instrument 
vendors 
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Characterization

One-shot 
LCMS/characterizat
ion

Data 
security/cyber 
security LAI

NIST autonomous 
SynBio

Difficult to 
interpret analytical 
data, e.g. HPLC, in 
automated fashion 
without human 
intervention

Telerobotic 
sample prep + 
analysis 

Brookhaven + 
automated 
updating of SACS 
data on thin films

Poor descriptors 
in terms of 
characterization 
data for soft 
materials

Polymers are 
inherently poorly 
defined

Spatial temporal 
high throughput 
characterization 

Characterization 
on high 
throughput 
across scales of 
soft materials 
from hydrogels to 
glassy plastics 

Limited amount 
of well-curated, 
well-defined 
data on soft 
materials

Lack of automated 
sample purification 
and preparation 
robotic tools
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3D printers

Flow Chem 
coupled to 
AI@MIT Klaus 
Jensen et al

AI+ML 
collaboration 
between 
chemistry, 
physics, software 
engineers 

Remote access + 
easily 
accessibility – 
APPs for users 
(K12, academia, 
industry, 
government)

Autonomous 
scale-up

Flow Chemistry

MERK 
Chemspeed 
based 
autonomous 
optimization 
platform 
…funded

Telerobotic 
additive 
manufacturing

BioPACIFIC MIP
Supply chain 
stability 

Morehouse

Access to scale up 
equipment to 
bridge from lab 
to industry 

AI-guided 
optimization flow-
based reaction 
could bridge the 
gap in scale to 
help materials 
discovery 

Automated 
modular small 
molecule 
synthesis-on 
scale – could be 
achieved with a 
national facility, 
could 
revolutionize 
materials 
discovery 

Scale-Up / Manufacturing
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Certification / Qualification

Coursera courses 
in part developed 
by leading 
companies in the 
field (Google, 
Amazon, IBM) or 
university 
professors: 
UDEMY, U-Tube

Certification 
programs outside 
academic 
degrees

AR-Headset 
based trainings, 
e.g. on 
infrastructure 
like chemspeed, 
automated 
sample prep, 
characterization 
devises for 
standard 
operation

Need to validate 
automation 
processes across 
large facilities. 
Need an 
ecosystem 
approach

Free certificate 
program at MMLI 
‘AI-empowered 
Chemistry: A 
Playbook”, high 
throughput 
evaluation of 
defects

Leverage training 
schools and 
community 
colleges for 
workforce 
development, 
student 
certification and 
badges, faculty 
certification for 
training other 
faculty 
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Recycling / End-of-Use

Fine tuning of 
large AI 
foundation 
models framed to 
learn the 
representation of 
molecules such 
as IBN 
MoLFormer for 
toxicity 
prediction

Depolymerizatio
n databases

ALLCHEMY “waste 
to drugs” 
networks

MSU

Platforms to 
orchestrate many 
AI models to be 
used in 
cooperation not 
in isolation and 
enable ease of 
use

Streamlined 
approach to 
collecting data 
for MGI (via 
journals and 
federal agencies) 

Sustainable M3 

materials and 
manufacturing

Lifecycle analysis 
for new and old 
polymer 
materials 
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Functional Semiconductors 
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Discovery & Experimental Design

Need success 
story of data 
sharing for failed 
experiments 

CITRON
LISA at 
Caltech/DOE 
funded

COMSOLE, 
CADENCE, 
Synopsys, etc 
starting to 
include ML/AI

Industry standard
LAM research, 
BAY ESIAN

Materials project
Materials data 
handling

NC State ALPHA 
Flow

LAM research
Missing in low/trl 
labs 

Optimization 
process for 
experimental 
design

DFT

LAM research – 
materials 
properties tables 
in public domain 
use and for 
material 
selection

Hetero-
nanostructures 
(photodetectors)

Software 
products to 
facilitate 
experimental 
design, eg. 
CYGNUS, 
proprietary

DOE, Power 
America Institute

DOE hydrogen 
EMN consortium, 
semiconductor

Force Field
No standardized 
data formats 

Need 
development + 
accessibility to 
specialized user 
facility 

ORNL INTERSECT, 
LLM for materials

Need for new 
precursors for 
discovery

Schroedinger
Results of failed 
experiments are 
not available 

GAPS: 
Thermodynamic 
and Kinetic 
Process data

Need cross 
training of 
domain scientists 
+ software 
developers 

Google, etc.

Klimeck/Tilmann 
@ Purdue

Atomistic 
modeling (also 
running 
nanohub)

NSF Fuse 
codesign model
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Synthesis

Traditional 
customized 
synthesis model 

NSF MIPs: 2DCC 
and PARADIM

Samsung 
advanced 
institute of 
technology

COMSOL
Robotic sample 
handling

PARADIM MIP 
single crystal-
bulk crystal 
facility deployed 
ML feedback – 
decision making 
preceded 
automation

There is a huge 
untapped 
opportunity for 
an automated 
modular 
synthesis model 

ANL-Globus

Foundry 
autonomous 
synthesis for 
nanoparticles + 
thin films

REAXFF

Small molecule 
synthesis is so 
powerful, but in-
situ is limited 

Autonomous lab ATHENA

Need national 
facilities for 
molecular 
innovation 

T-CARD

Lack of physics-
based models for 
synthesis, need 
translation of 
model from small 
scale to 
production 

ORNL INTERSECT 
command + 
control

Abstraction layer

Need 
standardized 
software for lab 
scale database
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LBNL Davis 
Prendergast, X-Ray 
spectra 
stimulation

X-Ray Neutron 
Electron facilities 
ORNL/BNL

LAM research 
proprietary 
automated + 
semiautomated 
extraction from 
topographic 
structures

LAM research SIM-
automated feature 
extraction

Industry standard
Computation and 
data driven 
discovery at BNC

InLINE
NIST Jarvis 
functionals DATA 
infrastructure

AT SCALE  edge 
computing

Need analysis 
functions 
embedded in 
software 

Camera@LBNC

Molecular foundry 
LBL

Need 
standardized data 
formats for tools 

Autosampling for 
TEM NSRCs

Need decision 
tools for example 
XRD, etc, that are 
as good as experts 

Multispectra data 
Georgia Tech SRC

ORNL INTERSECT”30 
autonomous 
microscopy

Characterization
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GAPS: Grinding 
Chemical 
Mechanical 
Polish. CMP

Proprietary data 
infrastructure 
(semicon. MFG)

ORNL additive 
manufacturing

Vizglow, co-
ventor, LAM 
research, internal 
products  

Need funding for 
methodology 
change + 
automation 

Various FDC tools 
for exception 
detection and 
management 

DOE, DURAMAT, 
EMN consortium

Need ways to 
manage 
proprietary data 

Automated 
W/interrupt 
driven (semicon 
MFG) decision 
making

Ability to focus 
long enough for 
infrastructure 
and 
implementation 

Need incentives 
for workforce 
development to 
push data 
infrastructure 

VIZglow/Co-
ventor unit 
processes 
integration

Digital twin 
needs to be used 
to demonstrate 
value of having 
the systems in 
steps 

LAM research 
molecular 
dynamics

Need 
comprehensive 
digital twins from 
materials to 
device 

Need 
interoperable 
digital twins that 
can be shared 

Consider 
federated 
learning data 

Provide model 
but not 
proprietary data 

Scale-Up / Manufacturing
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Certification / Qualification

ORNL additive 
manufacturing 
“born qualified” 
parts

LAM research 
automated visual 
inspection, e.g. 
window defects

Need to integrate 
certification/ 
qualification with 
discovery/design

Go/no-Go on 
window LAM 
research

No verification of 
reproducibility 

From discovery of 
new materials to 
reliability
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Recycling / End-of-Use

Need to consider 
sustainability 
within 
autonomous 
process 

Need analysis 
(autonomous) of 
downstream 
chemicals/ 
products 

Cadmium 
Telluride (CdTe) 
recycle +reuse

Critical materials 
innovation hub – 
DOE AMES

Remote reuse 
sustainability 
CdTe

Europe’s SSBD
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Other 
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Discovery & Experimental Design

Need excited 
state data not 
ground state 

AFRL ARES 
autonomous 
synthesis

PARADIM MIP 
automated MBE 
most automated 
in the world

Automated data 
handling and 
curation

Emerging Data 
interpretation and 
feedback

Need real-time in-
situ metrology 

Need 3D in-situ 
metrology in real 
time
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D. Summary Slides for Breakout Groups 
The slides that were presented during the summary of the breakout sessions are illustrated in the images 
that follow. Please note that the inventories and gaps discussed below are derived from inputs collected at 
the workshop based on the knowledge and experiences of diƯerent participants. They are not 
comprehensive and do not reflect the opinion of all attendees. Also, the specific resources listed 
throughout the document were identified by the participants and should not be taken as an endorsement in 
any way or considered to be complete. 

Structural Metals 
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Structural Ceramics 
 

 

Structural Soft Matter 
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Functional Metals 
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Functional Ceramics 
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Functional Soft Matter 
 

 

Functional Semiconductors 
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E. Registration Questions with Optional Input Opportunities 
Last Name  

First Name 

Email  

Are You a Federal Employee  

Please consider sharing your pronouns. Pronouns are the part of speech used to refer to someone 
in the third person. We want to know how to respectfully refer to you. For example, She/Her/Hers, 
He/Him/His, Ze/Hir/Hirs, They/Them/Them, etc.  

Please let us know if you would like your pronouns included on your name tag.  

Email Address  

Telephone Number  

Institution / Organization  

Division / Departmental AƯiliation  

Please describe any accommodations that will facilitate your full participation in this event.  

Name of Project / Platform / Center / etc.  

Website URL (if available)  

Type of Capability(ies) – Experimental, Computational, Data Infrastructure, etc  

Level of automation or autonomy (integration of AI/ML to help guide or direct experiments) (N/A if 
none)  

Materials class the capability addresses (more than one possible) - Selected Choice  

Additional information that you would like to contribute.  

Let us know if you have initial thoughts on what specific capabilities are missing from the 
Autonomous Materials Innovation Infrastructure (AMII) to truly accelerate the materials 
development continuum (design through manufacture.)  

Beyond funding limitations, what are the barriers to large-scale adoption of autonomous and 
automated laboratories  

We are looking to define numerous, specific, measurable targets that are both challenging and 
achievable in the next 2-5 years. We plan to solicit additional input to these specific targets during 
this June workshop and at the following MGI PI meeting (July 30-31, 2024). Here, you may contribute 
ideas of specific, measurable targets to address a challenge in areas such as, but not limited to, 
materials for Water Security, Human Health and Welfare, Energy, Economic Competitiveness, or 
National Security.  
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F. Analysis of Registration Data 

FROM REGISTRATION DATA: METALS AND METALLIC 

NANOSTRUCTURES 
Common Themes 

There are several common themes and trends in autonomous infrastructure in the field of metals 
and metallic nanostructures:  

AI/ML and Autonomous Decision Making 

There is a pervasive use of artificial intelligence (AI) and machine learning (ML) 
technologies across various stages of materials research and development. AI/ML is 
employed for guiding experiments, optimizing processes, predicting material properties, 
and managing large datasets. 

Many projects leverage AI/ML for guiding and optimizing experiments, simulations, and 
material discoveries. 

Examples: Accelerated Materials Design and Discovery (AMDD), Army Research 
Laboratory's BIRDSHOT framework, CORPORATE RESEARCH, DARPA Project, High-
Throughput Materials Discovery for Extreme Conditions (HTMDEC). 

Autonomous and Self-Driving Laboratories: Full and Partial Automation 

Several facilities are moving towards autonomous operation, where processes such as 
synthesis, characterization, and data analysis are increasingly automated. This trend 
supports rapid experimentation and scalability. 

Projects range from fully autonomous laboratories to those with partial or supervised 
autonomy. 

Examples: $180M Integrative Sciences Building at NC State University (supervised 
autonomy), Interconnected Science Ecosystem (INTERSECT) (full integration of AI/ML 
workflows), Adaptive Tunability for Synthesis and Control via Autonomous Learning on 
Edge (AT SCALE) (full autonomy). 

High Throughput and Multimodal Approaches 

The emphasis on high-throughput methodologies is clear, allowing for the rapid screening 
of materials under various conditions. This approach is often complemented by 
multimodal experimental workflows that integrate diverse data streams. 
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There's a significant emphasis on autonomous and high-throughput experimental setups 
to accelerate material discovery and optimization. 

Examples: AT SCALE, Army Research Laboratory (ARM), Beyond Fingerprinting Grand 
Challenge LDRD, NC State Self-Driving Fluidic Labs. 

Data Infrastructure and Management 

Robust data infrastructure and management systems are being developed to handle the 
large volumes of data generated by high-throughput experiments and simulations. 

Examples: DOE Energy Materials Network, Materials Data Facility, OpenMSIStream, 
PARADIM, HT-MAX, VariMat. 

Integration of Experimental, Computational, and Data Capabilities 

Many initiatives and projects emphasize the seamless integration of experimental setups 
with computational models and robust data infrastructure. This integration allows for 
high-throughput experimentation and real-time data analysis. 

Many initiatives integrate experimental, computational, and data infrastructure to create 
comprehensive platforms for material science research. 

Examples: Acceleration Consortium, INTERSECT, IMQCAM. 

Collaborative and Open Infrastructures 

Many projects aim to develop open architectures and collaborative ecosystems that 
facilitate data sharing, interoperability of tools, and integration of AI/ML across different 
research domains. 

Funding and Strategic Initiatives  

Significant funding and strategic initiatives are driving the development of these 
autonomous infrastructures, indicating a strong commitment to advancing materials 
science through innovative technological solutions. 

Estimate of Autonomous Infrastructure in Metals and Metallic Nanostructures 

Estimating the exact extent of autonomous infrastructure in place is challenging without specific 
metrics, but the prevalence of these themes suggests a substantial integration of autonomous 
capabilities across the field of metals and metallic nanostructures research. 

Based on the provided data, a substantial portion of the infrastructure in the field of metals and 
metallic nanostructures is moving towards autonomous systems. This includes: 
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High Automation/Autonomy: Projects like AT SCALE, Army Research Laboratory's ARM, and 
BIRDSHOT framework, which integrate AI/ML deeply into experimental workflows, achieve 
high levels of automation. 

Supervised and Partial Autonomy: Facilities like NC State’s Integrative Sciences Building and 
some initiatives within the Lab of the Future exhibit supervised autonomy. 

Early Stages/Evolving: Some projects, such as Deposition and Semiverse Solutions Product 
Groups, are in the early stages of integrating automation and AI/ML. 

Conclusion 

The field of metals and metallic nanostructures exhibits a strong trend towards integrating AI/ML 
and autonomous systems, particularly in high-throughput experimental setups and data 
management. This trend indicates a robust movement towards fully autonomous research 
environments, although the degree of automation varies across different projects and initiatives. 

RAW DATA 

Name of Project / 
Platform / Center / 
etc. 

Website URL (if available) 

Type of Capability(ies) – 
Experimental, 
Computational, Data 
Infrastructure, etc 

Level of automation or 
autonomy (integration of 
AI/ML to help guide or 
direct experiments) (N/A if 
none) 

OƯice of Naval 
Research   

Experimental, 
Computational, Data 
Infrastructure, funding 

High 

Pacific Northwest 
National Laboratory 

https://www.pnnl.gov/project
s/at-scale ; 
https://www.pnnl.gov/high-
throughput-center 

    

$180M Integrative 
Sciences Building at 
NC State University 
(under construction) 

https://provost.ncsu.edu/univ
ersity-interdisciplinary-
programs/isb/ 

One floor of 
Automated/Autonomou
s Chemistry Labs with 
in-house 
Computational 
infrastructure 

Supervised autonomy and 
full automation 

Accelerated Materials 
Design and Discovery 
(AMDD) 

https://github.com/TRI-
AMDD 

Experimental, 
computational, data 
infrastructure 

Integration of AI/ML to 
help guide or direct 
experiments and 
simulations 

Acceleration 
Consortium 

https://acceleration.utoronto.
ca/ All of the above Self-Driving Lab User 

Facility 
Adaptive Tunability for 
Synthesis and Control 
via Autonomous 
Learning on Edge (AT 
SCALE) 

https://www.pnnl.gov/project
s/at-
scale/about#:~:text=Adaptive
%20Tunability%20for%20Sy
nthesis%20and%20Control

Experimental, Data, 
Computational, AI/ML 

full autonomy, with AI/ML 
enabling real-time 
decisions 
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%20via%20Autonomous,mat
erials%20synthesis%20by%2
0developing%20closed-
loop%20autonomous%20pre
cision%20synthesis. 

AI-enabled materials 
discovery  

https://www.jhuapl.edu/news
/news-releases/230503-ai-
discovers-novel-
superconductor 

Experimental 
(synthesis, 
characterization), 
Computational 
(structure prediction, AI 
models, frameworks for 
discovery) 

AI-enabled framework 
with SME in the loop, 
Bayesian optimization 
enabled high throughput 
testing 

ARES OS 2.0 https://github.com/AFRL-
ARES/ARES_OS 

Software for 
autonomous 
experimentation  

Full 

Army Research 
Laboratory - High 
Throughput Materials 
Discovery for Extreme 
Environments Center 
(HTMDEC) at Texas 
A&M University, the 
name of the Center is 
BIRDSHOT (Batch-
wise Improvement in 
Reduced Materials 
Design Space using a 
Holistic Optimization 
Technique). 
BIRDSHOT is also 
used for ARPA-E 
ULTIMATE Program 
and 2 NSF DMREF 
Programs. 
Experimental part of 
BIRDSHOT Center is 
called ARM 
(Autonomous 
Robotics Metallurgist) 
where we can 
synthesize, process, 
characterize, and test 
materials in a high 
throughput fashion.  

  

We have several 
computational tools 
applied to metallic 
materials 
(computational 
materials science, 
thermodynamics, and 
kinetics models, 
statistical frameworks 
such as Batch Bayesian 
Optimization to design 
alloys to fabricate and 
test) and experimental 
capabilities to design, 
fabricate, process, 
characterize, and test 
metallic alloys in a high 
throughput fashion. We 
have designed, 
fabricated, processed, 
and tested more than 
400 new metallic alloys 
in bulk dimensions in 
the last 3 years in 
various programs 
mentioned above.  

In all our materials design, 
fabrication, and testing 
eƯorts we integrate AI/ML 
methods to direct 
experiments using the 
BIRDSHOT framework in 
the programs mentioned 
above.  

Beyond Fingerprinting 
Grand Challenge 
LDRD 

  

Multimodal high-
throughput 
experimental 
workflows; Data 

quantified automation-
based speedups of 10-
100X across 10's of 
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management system; 
ML algorithms for 
multi-objective process 
optimization 

synthesis & 
characterization tools 

Center for Advanced 
Manufacturing 
Innovation (CAMINO) 

https://www.youtube.com/wa
tch?v=WLXyXJ2N8Zw experimental under development 

Lockheed Martin 

CORPORATE 
RESEARCH 

  Experimental / 
Computational  / Data 

AI/ML to guide materials 
discovery and 
Generative/Reinforcemen
t for Optimization 

DARPA Project: RIDE, 
METALS, and SURGE 

https://www.darpa.mil/staƯ/d
r-andrew-detor 

Materials-integrated 
design optimization, 
accelerated 
experimental material 
property testing, 
process data driven 
part qualification 

Varies by program and 
performer. 

Deposition and 
Semiverse Solutions 
Product Groups 

https://www.lamresearch.co
m/semiverse-solutions/ 
https://www.lamresearch.co
m/products/our-
processes/deposition/ 

Experimental and 
computational and data 
infrastructure 

Early stages 

DOE Energy Materials 
Network 

https://www.energy.gov/eere/
energy-materials-
network/energy-materials-
network 

All of the above Misc 

DSEMD HTMDEC 
Data Platform data.htmdec.org 

Data Infrastructure 
portal with linked data 
framework and 
automated workflow 
running 

linked automation 

High-Throughput 
Materials Discovery 
for Extreme 
Conditions 
(HTMDEC) 

https://arl.devcom.army.mil/h
tmdec/ 

High-Throughput 
Processes, 
Methodologies, and 
Data Management  

Integration of AI/ML, 
Bayesian Optimization, 
Data Streaming/Analysis 
in the Cloud  

https://www.pnnl.gov
/projects/nets 

https://www.pnnl.gov/project
s/nets 

Flow and Field Assisted 
Nucleation of Critical 
Materials 

  

ICME for Army 
Castings   

Experimental, 
Computational, Data 
Infrastructure 

Using AI design tools to 
improve gating designs in 
castings 

IMQCAM (NASA 
STRI) data.imqcam.org 

Data infrastructure 
platform for metal 
additive manufacturing 
Digital Twin 

Automated data ingress 
and workflow running 
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Interconnected 
Science Ecosystem 
(INTERSECT) 

https://www.ornl.gov/intersec
t 

Autonomous Chemistry 
Laboratory, 
Autonomous Chemical 
Flow Reactors, 
Command and Control 
Open Infrastructure, 
Data Abstraction Layer,  

Development and 
Integration of AI/ML into 
an open architecture to 
interconnect autonomous 
lab capabilities across 
science domains 

Interconnected 
Science Ecosystem 
(INTERSECT) 

https://www.ornl.gov/intersec
t 

Experimental + 
Computational + Data 
Infrastructure 

Fully integrated AI/ML 
workflows across multiple 
materials theory, 
synthesis, and 
characterization activities 

Lab of the Future   
Data management, AI, 
Robotics, Materials 
Synthesis, Flow Testing 

Partial 

Materials 
Characterization and 
Processing Center 

https://engineering.jhu.edu/
MCP/ 

Integration of data 
infrastructure, 
computing, high 
throughput, and 
experimental platforms 

AI/ML, ML on edge, 
automation, deep 
learning, FAIR data 

Materials Data Facility https://materialsdatafacility.o
rg Data infrastructure   

MURI: From 
Percolation to 
Passivation (P2P): 
Multiscale Prediction 
and Interrogation of 
Surface and Oxidation 
Phenomena in Multi-
Principal Element 
Alloys (MPEAs) 

https://engineering.jhu.edu/d
cg/research/p2p-muri/ 

high 
throughput/combinatori
al synthesis, theory, 
data, AI/ML, closed-
loop experimentation 

automation, AI/ML, 
autonomous 
characterization 

Nano4EARTH https://www.nano.gov/nano4
EARTH 

National 
Nanotechnology 
Challenge 

  

NC State Self-Driving 
Fluidic Labs (Artificial 
Chemist, AlphaFlow, 
SmartDope, and Fast-
Cat) 

https://www.abolhasanilab.c
om/ 

Both Experimental and 
Computational Supervised autonomy 

OpenMSIStream, 
PARADIM, HT-MAX, 
VariMat 

  

Data Infrastructure, 
data streaming, stream 
processing, decision 
orchestration 

integration of data 
collection, ML decision 
making, ML decision 
deployment, instrument 
control 

The Materials 
Discovery Research 
Institute  

www.ul.org 

Data Infrastructure, 
Theoretical and 
Computational, 
Automated Synthesis 

Building Capabilities  
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Capabilities, Digital-
First Laboratories  
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FROM REGISTRATION DATA: CERAMICS 
Common Themes in the Ceramics Data 

1. Integration of AI/ML: 
o Several projects involve the use of AI/ML for materials discovery, synthesis optimization, 

and data analysis. Examples include the High-Throughput Materials Discovery for Extreme 
Conditions (HTMDEC), Data-Driven Synthesis Science, and the Samsung ASTRAL 
project. 

2. Autonomous Experimentation and Characterization: 
o Autonomous experimentation is a key focus area. Projects like ARES OS 2.0, HTMDEC, 

and the Materials Characterization and Processing Center highlight eƯorts in this 
direction. 

3. High-Throughput Processes: 
o High-throughput experimentation and combinatorial synthesis are common themes, 

particularly in projects like HTMDEC and MURI: From Percolation to Passivation. 
4. Data Infrastructure and Management: 

o Robust data infrastructure is essential for many projects, facilitating data collection, 
streaming, analysis, and decision-making. Examples include the DSEMD HTMDEC Data 
Platform and the Materials Data Facility. 

5. Collaborative and Multi-disciplinary Approaches: 
o Collaborative eƯorts across diƯerent scientific disciplines and institutions are prevalent. 

Projects like Nano4EARTH and OpenMSIStream involve multiple stakeholders and 
scientific domains. 

Estimation of Autonomous Infrastructure in Ceramics 

Based on the provided data, here is an estimate of the level of autonomous infrastructure in the 
ceramics field: 

1. Fully Autonomous: 
o ARES OS 2.0: Full autonomy in software for autonomous experimentation. 

2. High Integration of AI/ML: 
o High-Throughput Materials Discovery for Extreme Conditions (HTMDEC): Integration of 

AI/ML, Bayesian Optimization, Data Streaming/Analysis in the Cloud. 
o AI-enabled materials discovery: AI-enabled framework with SME in the loop, Bayesian 

optimization enabled high-throughput testing. 
o Samsung ASTRAL project: Automated powder synthesis with AI-assisted computational 

materials design. 
o Argonne Collaborative Center for Energy Storage Science: AI/ML for EELS, XAS data. 

3. Moderate to Strong AI/ML Integration: 
o NIST Materials Genome Program: Mixed integration of AI/ML for guiding materials 

discovery and optimization. 
o Designing Materials to Revolutionize and Engineer our Future: Less than 10% AI/ML 

integration at this stage. 
o Materials Characterization and Processing Center: Integration of AI/ML, automation, deep 

learning, FAIR data. 
4. Mixed or Emerging Integration: 



 

116 
 

o Deposition and Semiverse Solutions Product Groups: Early stages of integrating 
experimental, computational, and data infrastructure with AI/ML. 

o Lab of the Future: Partial integration of AI, robotics, materials synthesis, and flow testing. 
o CORPORATE RESEARCH: Partial integration of AI/ML for guiding materials discovery and 

optimization. 
5. Minimal or Developing: 

o Alabama Materials Institute: N/A (experimental materials characterization without 
specified AI/ML integration). 

o Projects with unspecified levels of AI/ML integration or still under development, such as 
the Materials Discovery Research Institute and MURI: From Percolation to Passivation. 

Conclusion 

The ceramics field exhibits a substantial presence of autonomous infrastructure and integration 
of AI/ML, particularly in high-throughput experimentation and data-driven materials discovery. 
While some projects are fully autonomous, many others are in various stages of adopting AI/ML 
to enhance their experimental and computational capabilities. The overall trend indicates 
increasing use of automation and AI/ML to accelerate the discovery and development of new 
ceramic materials. 

 

RAW DATA 

Name of Project / 
Platform / Center / 
etc. 

Website URL (if available) 

Type of Capability(ies) 
– Experimental, 
Computational, Data 
Infrastructure, etc 

Level of automation or 
autonomy (integration of 
AI/ML to help guide or 
direct experiments) (N/A 
if none) 

    

Experimental, 
Computational, Data 
Infrastructure, funding High 

ARES OS 2.0 
https://github.com/AFRL-
ARES/ARES_OS 

Software for 
autonomous 
experimentation  Full 

Nano4EARTH 
https://www.nano.gov/nano4
EARTH 

National 
Nanotechnology 
Challenge   

Alabama Materials 
Institute https://ami.ua.edu/ 

Experimental Materials 
Characterization N/A 

High-Throughput 
Materials Discovery 
for Extreme 
Conditions 
(HTMDEC) 

https://arl.devcom.army.mil/h
tmdec/ 

High-Throughput 
Processes, 
Methodologies, and 
Data Management  

Integration of AI/ML, 
Bayesian Optimization, 
Data Streaming/Analysis 
in the Cloud  
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DSEMD HTMDEC 
Data Platform data.htmdec.org 

Data Infrastructure 
portal with linked data 
framework and 
automated workflow 
running linked automatiion 

OpenMSIStream, 
PARADIM, HT-MAX, 
VariMat   

Data Infrastructure, 
data streaming, stream 
processing, decision 
orchestration 

integration of data 
collection, ML decision 
making, ML decision 
deployment, instrument 
control 

Materials Data Facility 
https://materialsdatafacility.o
rg Data infrastructure   

Data-Driven Synthesis 
Science (Gerd Ceder, 
LBL)   

Experimental, 
computational, data 
infrastructure AI/ML materials discovery 

NIST Materials 
Genome Program www.nist.gov/mgi 

Experimental, 
Computational, Data 
Infrastructure Mixed 

CORPORATE 
RESEARCH   

Experimental / 
Computational  / Data 

AI/ML to guide materials 
discovery and 
Generative/Reinforcemen
t for Optimization 

Lab of the Future   

Data management, AI, 
Robotics, Materials 
Synthesis, Flow Testing Partial 

Designing Materials to 
Revolutionize and 
Engineer our Future DMREF.org 

Experimental, 
Computational, Data 
Infrastructure 

Less than 10% at this 
stage 

Accelerated Materials 
Design and Discovery 
(AMDD) 

https://github.com/TRI-
AMDD 

Experimental, 
computational, data 
infrastructure 

Integration of AI/ML to 
help guide or direct 
experiments and 
simulations 

AI-enabled materials 
discovery  

https://www.jhuapl.edu/news
/news-releases/230503-ai-
discovers-novel-
superconductor 

Experimental 
(synthesis, 
characterization), 
Computational 
(structure prediction, AI 
models, frameworks for 
discovery) 

AI-enabled framework 
with SME in the loop, 
bayesian optimization 
enabled high throughput 
testing 
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Materials 
Characterization and 
Processing Center 

https://engineering.jhu.edu/
MCP/ 

Integration of data 
infrastructure, 
computing, high 
throughput, and 
experimental platforms 

AI/ML, ML on edge, 
automation, deep 
learning, FAIR data 

MURI: From 
Percolation to 
Passivation (P2P): 
Multiscale Prediction 
and Interrogation of 
Surface and Oxidation 
Phenomena in Multi-
Principal Element 
Alloys (MPEAs) 

https://engineering.jhu.edu/d
cg/research/p2p-muri/ 

high 
throughput/combinatori
al synthesis, theory, 
data, AI/ML, closed-
loop experimentation 

automation, AI/ML, 
autonomous 
characterization 

Deposition and 
Semiverse Solutions 
Product Groups 

https://www.lamresearch.co
m/semiverse-solutions/ 
https://www.lamresearch.co
m/products/our-
processes/deposition/ 

Experimental and 
computational and data 
infrastructure Early stages 

The Materials 
Discovery Research 
Institute  www.ul.org 

Data Infrastructure, 
Theoretical and 
Computational, 
Automated Synthesis 
Capabilities, Digital-
First Laboratories  Building Capabilities  

    

Developing an MGI 
relevant Strategy and 
Roadmap for the DoD N/A 

  

https://www.pnnl.gov/project
s/at-scale ; 
https://www.pnnl.gov/high-
throughput-center     

Samsung ASTRAL 
project at Advanced 
Materials Lab 

https://www.nature.com/artic
les/s44160-024-00502-y 

Experimental, 
Computational, Data 
Infrastructure 

Automated powder 
synthesis with AI-assisted 
computational materials 
design 

Argonne Collaborative 
Center for Energy 
Storage Science    

Cryo EM, Advanced 
Photon Source  AI/ML for EELS , XAS data  
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FROM REGISTRATION DATA: SOFT MATERIALS - POLYMERS AND 

BIOMATERIALS 

The common themes, as well as estimate the level of autonomous infrastructure in the field of 
soft materials, were analyzed: 

Common Themes in the Data 

Integration of AI/ML: Many projects and platforms are incorporating AI/ML to enhance 
materials discovery and experimentation. This includes: 

 AI/ML to guide and direct experiments. 
 Autonomous chemistry labs. 
 AI-guided synthesis and discovery. 

Autonomous Experimentation: Several initiatives focus on fully autonomous or semi-
autonomous experimentation. This is evident in projects like ARES OS 2.0, Brown research 
group, and Interconnected Science Ecosystem. 

Data Infrastructure: Emphasis on data infrastructure to support experimental and 
computational research. Platforms like the Materials Data Facility and BioPACIFIC MIP highlight 
the need for robust data handling and integration. 

Collaborative and Multi-disciplinary Approaches: Many projects involve collaborations 
across different scientific disciplines and institutions. Examples include the DREAM platform and 
the NSF 24-567 initiative. 

High-throughput Experimentation: There is a trend towards high-throughput experimentation 
enabled by AI/ML and automation. This allows for rapid screening and discovery of new 
materials. 

Estimation of Autonomous Infrastructure in Soft Materials 

Based on the information in the table, here's an estimate of the level of autonomous 
infrastructure in the field of soft materials: 

Fully Autonomous: 

o ARES OS 2.0: Software for autonomous experimentation. 
o Brown research group: Fully autonomous systems for studying polymers. 
o AI-enabled materials discovery: AI-enabled framework with SME in the loop for high-

throughput testing. 
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High Integration of AI/ML: 

o Materials Discovery Research Institute (MDRI): Integration of AI/ML to guide experiments. 
o Interconnected Science Ecosystem: Development and integration of AI/ML into an open 

architecture. 
o BioPACIFIC MIP: Integration of AI/ML to guide experiments and develop high-throughput 

robotic experimentation. 

Moderate to Strong AI/ML Integration: 

o NRT on Soft Autonomous Experimentation: Moderate to strong AI/ML integration. 
o NSF 24-567: AI/ML required for polymer design and synthesis, with autonomous lab 

manipulations allowed. 
o Molecule Maker Lab and Molecule Maker Lab Institute: Automated modular synthesis 

integrated with AI. 

Mixed or Emerging Integration: 

o NIST Materials Genome Program: Mixed level of AI/ML integration. 
o Materials Characterization and Processing Center: AI/ML, ML on edge, automation, and 

deep learning. 
o NSF MRSEC at UC Santa Barbara: Small but growing integration of AI/ML. 

Minimal or Developing: 

o Designing Materials to Revolutionize and Engineer our Future: Less than 10% integration 
at this stage. 

o Projects with unspecified levels of AI/ML integration or still under development, such as 
thermal protection systems/Ames. 

Conclusion 

Overall, the field of soft materials research is witnessing significant advancements in the 
integration of autonomous infrastructure. While some projects are fully autonomous, many are at 
various stages of integrating AI/ML to enhance experimental and computational capabilities. The 
trend indicates a growing emphasis on automation and AI/ML to accelerate materials discovery 
and development. 

RAW DATA 

Name of Project / 
Platform / Center / 
etc. 

Website URL (if available) 

Type of Capability(ies) 
– Experimental, 
Computational, Data 
Infrastructure, etc 

Level of automation or 
autonomy (integration of 
AI/ML to help guide or 
direct experiments) (N/A 
if none) 

Materials Discovery 
Research Institute 
(MDRI) 

https://ul.org/research/materi
als-discovery 

All the above, 
experimental, 

integration of AI/ML to 
help guide 
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computational and data 
Infrastructure 

Interconnected 
Science Ecosystem 

https://www.ornl.gov/intersec
t 

Autonomous Chemistry 
Laboratory, 
Autonomous Chemical 
Flow Reactors, 
Command and Control 
Open Infrastructure, 
Data Abstraction Layer,  

Development and 
Integration of AI/ML into 
an open architecture to 
interconnect autonomous 
lab capabilities across 
science domains 

ARES OS 2.0 
https://github.com/AFRL-
ARES/ARES_OS 

Software for 
autonomous 
experimentation  Full 

Nano4EARTH 
https://www.nano.gov/nano4
EARTH 

National 
Nanotechnology 
Challenge   

Workshops on Self-
Driving Labs 

https://events.mcs.cmu.edu/
ac-sdl_workshop/ and 
https://research.ncsu.edu/fut
urelabsworkshop/  

Eventually will be 
experimental and data 
infrastructure, 
combined. 

Human intervention as 
well as AI-driven 

NRT on Soft 
Autonomous 
Experimentation 

https://soft-
ae.seas.upenn.edu/ 

Experimental; 
Curricular Moderate to Strong 

NSF 24-567: 
Molecular 
Foundations for 
Sustainability: 
Sustainable Polymers 
Enabled by Emerging 
Data Analytics (MFS-
SPEED) 

https://new.nsf.gov/funding/o
pportunities/molecular-
foundations-sustainability-
sustainable/nsf24-
567/solicitation 

Current Solicitation 
accepting proposals 

AI/ML is required for 
polymer design and 
synthesis; autonomous 
lab manipulations are not 
required, but are allowed 

Laboratory for 
Research on the 
Structure of Matter / 
Singh Center for 
Nanotechnology / 
Interdisciplinary 
Training in Data 
Driven Soft Materials 
Research and Science 
Policy  

lrsm.seas.upenn.edu ; 
nano.upenn.edu ; soft-
ae.seas.upenn.edu 

Microfabrication, 
Materials 
Characterization, 
Computational 
facilities N/A 
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thermal protection 
systems/Ames   

experimental, 
computational, data   

Materials Data Facility 
https://materialsdatafacility.o
rg Data infrastructure   

DREAM: Data-driven 
Reinvigorated 
Advanced Membrane 
Discovery Platform 
(Xiaodan Gu, U. So. 
Miss)   Experimental 

AI/ML for synthetic 
discovery of polymers 

NIST Materials 
Genome Program www.nist.gov/mgi 

Experimental, 
Computational, Data 
Infrastructure Mixed 

Acceleration 
Consortium 

https://acceleration.utoronto.
ca/ All of the above 

Self Driving Lab User 
Facility 

BioPACIFIC MIP https://biopacificmip.org/ 
Experimental, Data 
Infrastructure  

Integration of Al/ML to 
help guide experiments, 
develop high-throughput 
robotic experimentation 
and develop data 
infrastructure 

Designing Materials to 
Revolutionize and 
Engineer our Future DMREF.org 

Experimental, 
Computational, Data 
Infrastructure 

Less than 10% at this 
stage 

Accelerated Materials 
Design and Discovery 
(AMDD) 

https://github.com/TRI-
AMDD 

Experimental, 
computational, data 
infrastructure 

Integration of AI/ML to 
help guide or direct 
experiments and 
simulations 

Brown research group kablab.org Experimental 

Fully autonomy. We have 
one one self-driving lab 
since 2018 to study 3D 
printing polymers with a 
second new fully-
autonomous system now 
coming online to study 
electrodeposited 
polymers. 
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AI-enabled materials 
discovery  

https://www.jhuapl.edu/news
/news-releases/230503-ai-
discovers-novel-
superconductor 

Experimental 
(synthesis, 
characterization), 
Computational 
(structure prediction, AI 
models, frameworks for 
discovery) 

AI-enabled framework 
with SME in the loop, 
bayesian optimization 
enabled high throughput 
testing 

Molecule Maker Lab 
and Molecule Maker 
Lab Institute moleculemaker.org 

Automated Modular 
Synthesis, AI-Guided 
Closed-Loop Discovery, 
Functional 
Experimentation and 
Materials 
Characterization, Data 
Infrastructure (NCSA) 

Automated Modular 
Synthesis integrated with 
AI 

$180M Integrative 
Sciences Building at 
NC State University 
(under construction) 

https://provost.ncsu.edu/univ
ersity-interdisciplinary-
programs/isb/ 

One floor of 
Automated/Autonomou
s Chemistry Labs with 
in-house 
Computational 
infrastructure 

Supervised autonomy and 
full automation 

Materials 
Characterization and 
Processing Center 

https://engineering.jhu.edu/
MCP/ 

Integration of data 
infrastructure, 
computing, high 
throughput, and 
experimental platforms 

AI/ML, ML on edge, 
automation, deep 
learning, FAIR data 

NSF BIOPacific 
Materials Innovation 
Platform https://biopacificmip.org/ 

Experimental, 
computational, and 
data infrastructure Central to the platform 

NSF MRSEC at UC 
Santa Barbara https://www.mrl.ucsb.edu/ 

Experimental and 
computaional Small but growing 

Tri-Service 
Biotechnology for a 
Resilient Supply 
Chain (T-BRSC) 
program   Experimental   
Enhanced 
Performance 
Composite Vehicle 
Structures   

Experimental, 
Computational N/A 

Interconnected 
Science Ecosystem 
(INTERSECT) 

https://www.ornl.gov/intersec
t 

Experimental + 
Computational + Data 
Infrastructure 

Fully integrated AI/ML 
workflows across multiple 
materials theory, 
synthesis, and 
characterization activities 

DMREF:Materials 
Architected by 
Adapted Processing   

Experimental, 
Computational, Data 
Infrastructure 

Data driven control of 
materials processing.   
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CMU Cloud Lab, 
Pittsburgh 
Supercomputing 
Center, others 

https://cloudlab.cmu.edu/, 
https://www.psc.edu/ 

Experimental, 
Computation, Data high 

    

Developing an MGI 
relevant Strategy and 
Roadmap for the DoD N/A 

  

https://www.pnnl.gov/project
s/at-scale ; 
https://www.pnnl.gov/high-
throughput-center     
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FROM REGISTRATION DATA: SOLID STATE AND MATERIALS 

CHEMISTRY 

Based on the data provided, here are some common themes and an estimate of the extent of 
autonomous infrastructure in the field of solid-state and materials chemistry: 

Common Themes: 

Integration of AI/ML: 

o Many initiatives are incorporating AI and machine learning to guide and optimize 
experiments and simulations. 

o Examples include the Accelerated Materials Design and Discovery (AMDD), 
CORPORATE RESEARCH, and the Samsung ASTRAL project. 

High-Throughput and Autonomous Experimentation: 

o A significant focus on developing fully or partially autonomous laboratories. 
o Notable examples include the Brown research group, CMU Cloud Lab, and the 

Interconnected Science Ecosystem (INTERSECT). 

Data Infrastructure: 

o Emphasis on creating robust data infrastructures to support experimental and 
computational workflows. 

o Initiatives like the Materials Characterization and Processing Center and the 
OpenMSIStream project are focused on data integration and management. 

Experimental and Computational Synergy: 

o Combining experimental setups with computational models to accelerate 
materials discovery and characterization. 

o Projects such as the Alabama Materials Institute and AI-enabled materials 
discovery at JHUAPL exemplify this integration. 

Collaborative and Interconnected Systems: 

o Several programs aim to develop interconnected lab environments that allow for 
seamless data and process integration. 

o The Interconnected Science Ecosystem and the NSF Q-Amase-i Quantum 
Foundry are key examples. 
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Automated Synthesis and Discovery: 

o Automated modular synthesis and AI-guided closed-loop discovery are central 
themes. 

o The Molecule Maker Lab and the Materials Discovery Research Institute highlight 
these capabilities. 

Estimate of Autonomous Infrastructure: 

High-Level Autonomous Infrastructure: 

o Initiatives such as the Brown research group and the Self Driving Lab User Facility 
demonstrate fully autonomous capabilities, where AI/ML systems run 
experiments with minimal human intervention. 

o The Samsung ASTRAL project and the INTERSECT program also showcase 
significant autonomous features. 

Partial or Supervised Autonomy: 

o Several projects exhibit supervised autonomy, where human oversight is still 
required to some extent. 

o Examples include the NC State Self-Driving Fluidic Labs and the NIST Materials 
Genome Program. 

Developing or Experimental Stages: 

o Some programs are in the early stages of developing autonomous capabilities or 
are currently integrating AI/ML into their workflows. 

o The Designing Materials to Revolutionize and Engineer our Future and the 
OpenMSIStream project fall into this category. 

Conclusion 

From the data, it appears that the field of solid-state and materials chemistry is progressively 
incorporating autonomous infrastructure. About 30-40% of the initiatives have high levels of 
autonomous infrastructure, with fully operational AI/ML-guided systems. Another 30% exhibit 
partial or supervised autonomy, while the remaining initiatives are in developmental stages, 
building towards more autonomous capabilities. Overall, the integration of AI/ML, data 
infrastructure, and high-throughput experimentation are central to advancing autonomy in this 
field. 

RAW DATA 

Name of Project / 
Platform / Center / 
etc. 

Website URL (if available) 

Type of Capability(ies) 
– Experimental, 
Computational, Data 
Infrastructure, etc 

Level of automation or 
autonomy (integration of 
AI/ML to help guide or 
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direct experiments) (N/A 
if none) 

CORPORATE 
RESEARCH  

Experimental / 
Computational  / Data 

AI/ML to guide materials 
discovery and 
Generative/Reinforcemen
t for Optimization 

Designing Materials 
to Revolutionize and 
Engineer our Future DMREF.org 

Experimental, 
Computational, Data 
Infrastructure 

Less than 10% at this 
stage 

https://www.pnnl.gov
/projects/nets 

https://www.pnnl.gov/projec
ts/nets 

Flow and Field 
Assisted Nucleation of 
Critical Materials  

Interconnected 
Science Ecosystem 

https://www.ornl.gov/interse
ct 

Autonomous 
Chemistry Laboratory, 
Autonomous Chemical 
Flow Reactors, 
Command and Control 
Open Infrastructure, 
Data Abstraction Layer,  

Development and 
Integration of AI/ML into 
an open architecture to 
interconnect autonomous 
lab capabilities across 
science domains 

Interconnected 
Science Ecosystem 
(INTERSECT) 

https://www.ornl.gov/interse
ct 

Experimental + 
Computational + Data 
Infrastructure 

Fully integrated AI/ML 
workflows across 
multiple materials theory, 
synthesis, and 
characterization activities 

Lab of the Future  

Data management, AI, 
Robotics, Materials 
Synthesis, Flow Testing Partial 

Laboratory for 
Research on the 
Structure of Matter / 
Singh Center for 
Nanotechnology / 
Interdisciplinary 
Training in Data 
Driven Soft Materials 
Research and 
Science Policy  

lrsm.seas.upenn.edu ; 
nano.upenn.edu ; soft-
ae.seas.upenn.edu 

Microfabrication, 
Materials 
Characterization, 
Computational 
facilities N/A 

Materials 
Characterization and 
Processing Center 

https://engineering.jhu.edu/
MCP/ 

Integration of data 
infrastructure, 
computing, high 
throughput, and 
experimental platforms 

AI/ML, ML on edge, 
automation, deep 
learning, FAIR data 
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Materials Discovery 
Research Institute 
(MDRI) 

https://ul.org/research/mater
ials-discovery 

All the above, 
experimental, 
computational and 
data Infrastructure 

integration of AI/ML to 
help guide 

Molecule Maker Lab 
and Molecule Maker 
Lab Institute moleculemaker.org 

Automated Modular 
Synthesis, AI-Guided 
Closed-Loop 
Discovery, Functional 
Experimentation and 
Materials 
Characterization, Data 
Infrastructure (NCSA) 

Automated Modular 
Synthesis integrated with 
AI 

Nano4EARTH 
https://www.nano.gov/nano4
EARTH 

National 
Nanotechnology 
Challenge  

NC State Self-Driving 
Fluidic Labs (Artificial 
Chemist, AlphaFlow, 
SmartDope, and 
Fast-Cat) 

https://www.abolhasanilab.c
om/ 

Both Experimental and 
Computational Supervised autonomy 

NIST Materials 
Genome Program www.nist.gov/mgi 

Experimental, 
Computational, Data 
Infrastructure Mixed 

NSF Q-Amase-i 
Quantum Foundry 

https://quantumfoundry.ucsb
.edu/ 

Experimental, 
computational, and 
data infrastructure Small but growing 

OpenMSIStream, 
PARADIM, HT-MAX, 
VariMat  

Data Infrastructure, 
data streaming, stream 
processing, decision 
orchestration 

integration of data 
collection, ML decision 
making, ML decision 
deployment, instrument 
control 

Samsung ASTRAL 
project at Advanced 
Materials Lab 

https://www.nature.com/arti
cles/s44160-024-00502-y 

Experimental, 
Computational, Data 
Infrastructure 

Automated powder 
synthesis with AI-
assisted computational 
materials design 

SD2: RAPID  

Distributed high-
throughput experiment 
+ data eƯort 

"islands of automation" 
with AI/ML directed 
experiments.  

The Materials 
Discovery Research 
Institute  www.ul.org 

Data Infrastructure, 
Theoretical and 
Computational, Building Capabilities  
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Automated Synthesis 
Capabilities, Digital-
First Laboratories  

Workshops on Self-
Driving Labs 

https://events.mcs.cmu.edu/
ac-sdl_workshop/ and 
https://research.ncsu.edu/fu
turelabsworkshop/  

Eventually will be 
experimental and data 
infrastructure, 
combined. 

Human intervention as 
well as AI-driven 
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FROM REGISTRATION DATA: CONDENSED MATTER PHYSICS 
Common Themes in Condensed Matter Physics Data: 

Integration of AI/ML: 

o Like in the previous data, the integration of AI and machine learning is a recurring theme, 
aimed at guiding and optimizing experiments. 

o Examples include the Adaptive Tunability for Synthesis and Control via Autonomous 
Learning on Edge (AT SCALE), Army Research Laboratory, and CORPORATE RESEARCH. 

High-Throughput and Autonomous Experimentation: 

o There is a focus on developing systems that can perform high-throughput and 
autonomous experiments. 

o The Army Research Laboratory's BIRDSHOT Center and the ARES OS 2.0 software are 
notable examples. 

Data Infrastructure: 

o Emphasis on establishing robust data infrastructures to support experimental and 
computational processes. 

o Projects like the Materials Data Facility and the Materials Characterization and Processing 
Center highlight this focus. 

Experimental and Computational Synergy: 

o Combining experimental setups with computational models to accelerate the discovery 
and characterization of materials. 

o Examples include the INTERSECT program and the MURI: From Percolation to 
Passivation project. 

Collaborative and Interconnected Systems: 

o Initiatives aimed at creating interconnected lab environments to facilitate seamless data 
and process integration. 

o The Interconnected Science Ecosystem and the Laboratory for Research on the Structure 
of Matter exemplify these eƯorts. 

Automated Synthesis and Discovery: 

o Automated synthesis and AI-guided closed-loop discovery are key focuses. 
o The Army Research Laboratory's ARM system and the Materials Discovery Research 

Institute are notable initiatives. 
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Estimate of Autonomous Infrastructure in Condensed Matter Physics: 

High-Level Autonomous Infrastructure: 

o Initiatives such as the Army Research Laboratory's BIRDSHOT Center and the AT SCALE 
project exhibit full autonomy, with AI/ML systems making real-time decisions. 

o The ARES OS 2.0 software also supports full autonomous experimentation. 

Partial or Supervised Autonomy: 

o Some projects show partial autonomy, where human oversight is still necessary to some 
extent. 

o Examples include the INTERSECT program and the Designing Materials to Revolutionize 
and Engineer our Future initiative. 

Developing or Experimental Stages: 

o Several programs are in the early stages of developing autonomous capabilities or are 
currently integrating AI/ML into their workflows. 

o The NSF Q-Amase-i Quantum Foundry and the Laboratory for Research on the Structure 
of Matter are working towards more autonomous systems. 

Conclusion 

In the field of condensed matter physics, the integration of autonomous infrastructure is 
progressing, with about 30-40% of the initiatives demonstrating high levels of autonomous 
capabilities. These projects are incorporating AI/ML for real-time decision-making and 
optimization. Another 30% exhibit partial autonomy, requiring some level of human supervision, 
while the remaining initiatives are in the developmental stages. The common themes include 
AI/ML integration, high-throughput experimentation, robust data infrastructures, and the synergy 
between experimental and computational approaches. 

RAW DATA 

Name of Project / 
Platform / Center / 
etc. 

Website URL (if available) 

Type of Capability(ies) 
– Experimental, 
Computational, Data 
Infrastructure, etc 

Level of automation or 
autonomy (integration of 
AI/ML to help guide or 
direct experiments) (N/A 
if none) 

  

Experimental, 
Computational, Data 
Infrastructure, funding High 

    

  

Developing an MGI 
relevant Strategy and 
Roadmap for the DoD N/A 

 
https://www.pnnl.gov/project
s/at-scale ;   
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https://www.pnnl.gov/high-
throughput-center 

Adaptive Tunability for 
Synthesis and Control 
via Autonomous 
Learning on Edge (AT 
SCALE) 

https://www.pnnl.gov/project
s/at-
scale/about#:~:text=Adaptive
%20Tunability%20for%20Sy
nthesis%20and%20Control
%20via%20Autonomous,mat
erials%20synthesis%20by%2
0developing%20closed-
loop%20autonomous%20pre
cision%20synthesis. 

Experimental, Data, 
Computational, AI/ML 

full autonomy, with AI/ML 
enabling real-time 
decisions 

Alabama Materials 
Institute https://ami.ua.edu/ 

Experimental Materials 
Characterization N/A 

ARES OS 2.0 
https://github.com/AFRL-
ARES/ARES_OS 

Software for 
autonomous 
experimentation  Full 

Army Research 
Laboratory - High 
Throughput Materials 
Discovery for Extreme 
Environments Center 
(HTMDEC) at Texas 
A&M University, the 
name of the Center is 
BIRDSHOT (Batch-
wise Improvement in 
Reduced Materials 
Design Space using a 
Holistic Optimization 
Technique). 
BIRDSHOT is also 
used for ARPA-E 
ULTIMATE Program 
and 2 NSF DMREF 
Programs. 
Experimental part of 
BIRDSHOT Center is 
called ARM 
(Autonomous 
Robotics Metallurgist) 
where we can 
synthesize, process, 
characterize, and test  

We have several 
computational tools 
applied to metallic 
materials 
(computational 
materials science, 
thermodynamics, and 
kinetics models, 
statistical frameworks 
such as Batch Bayesian 
Optimization to design 
alloys to fabricate and 
test) and experimental 
capabilities to design, 
fabricate, process, 
characterize, and test 
metallic alloys in a high 
throughput fashion. We 
have designed, 
fabricated, processed, 
and tested more than 
400 new metallic alloys 
in bulk dimensions in 
the last 3 years in 
various programs 
mentioned above.  

In all our materials design, 
fabrication, and testing 
eƯorts we integrate AI/ML 
methods to direct 
experiments using the 
BIRDSHOT framework in 
the programs mentioned 
above.  
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materials in a high 
throughput fashion.  

CORPORATE 
RESEARCH  

Experimental / 
Computational  / Data 

AI/ML to guide materials 
discovery and 
Generative/Reinforcemen
t for Optimization 

Designing Materials to 
Revolutionize and 
Engineer our Future DMREF.org 

Experimental, 
Computational, Data 
Infrastructure 

Less than 10% at this 
stage 

Interconnected 
Science Ecosystem 
(INTERSECT) 

https://www.ornl.gov/intersec
t 

Experimental + 
Computational + Data 
Infrastructure 

Fully integrated AI/ML 
workflows across multiple 
materials theory, 
synthesis, and 
characterization activities 

Laboratory for 
Research on the 
Structure of Matter / 
Singh Center for 
Nanotechnology / 
Interdisciplinary 
Training in Data 
Driven Soft Materials 
Research and Science 
Policy  

lrsm.seas.upenn.edu ; 
nano.upenn.edu ; soft-
ae.seas.upenn.edu 

Microfabrication, 
Materials 
Characterization, 
Computational 
facilities N/A 

Materials 
Characterization and 
Processing Center 

https://engineering.jhu.edu/
MCP/ 

Integration of data 
infrastructure, 
computing, high 
throughput, and 
experimental platforms 

AI/ML, ML on edge, 
automation, deep 
learning, FAIR data 

Materials Data Facility 
https://materialsdatafacility.o
rg Data infrastructure  

Materials Discovery 
Research Institute 
(MDRI) 

https://ul.org/research/materi
als-discovery 

All the above, 
experimental, 
computational and data 
Infrastructure 

integration of AI/ML to 
help guide 

MURI: From 
Percolation to 
Passivation (P2P): 
Multiscale Prediction 
and Interrogation of 

https://engineering.jhu.edu/d
cg/research/p2p-muri/ 

high 
throughput/combinatori
al synthesis, theory, 
data, AI/ML, closed-
loop experimentation 

automation, AI/ML, 
autonomous 
characterization 
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Surface and Oxidation 
Phenomena in Multi-
Principal Element 
Alloys (MPEAs) 

Nano4EARTH 
https://www.nano.gov/nano4
EARTH 

National 
Nanotechnology 
Challenge  

NSF Q-Amase-i 
Quantum Foundry 

https://quantumfoundry.ucsb
.edu/ 

Experimental, 
computational, and 
data infrastructure Small but growing 
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FROM REGISTRATION DATA: ELECTRONIC AND PHOTONIC 

MATERIALS 
Common Themes in Electronic and Photonic Materials Projects 

Integration of AI/ML: 

o A significant number of projects emphasize the integration of artificial intelligence and 
machine learning (AI/ML) to guide and optimize experiments, synthesize materials, and 
manage data. This is seen across multiple initiatives such as ARES OS 2.0, the Adaptive 
Tunability for Synthesis and Control via Autonomous Learning on Edge (AT SCALE), and 
the Interconnected Science Ecosystem (INTERSECT). 

Focus on Automation: 

o Full or partial automation is a recurring theme, with projects like ARES OS 2.0 and NC 
State Self-Driving Fluidic Labs showcasing autonomous or semi-autonomous lab 
environments. This reduces human intervention and increases eƯiciency in material 
discovery and characterization processes. 

High-Throughput and High EƯiciency: 

o High-throughput experimental setups and automated workflows are commonly 
highlighted to speed up the discovery and optimization of materials. Projects like AI-
enabled materials discovery and the Molecule Maker Lab illustrate this theme well. 

Data Infrastructure and Management: 

o Robust data infrastructure and management systems are crucial components, ensuring 
the eƯective collection, storage, and analysis of large datasets. The Materials Data Facility 
and projects like OpenMSIStream emphasize this aspect, integrating data streaming and 
decision orchestration. 

Collaborative and Interconnected Research: 

o Many initiatives focus on creating interconnected ecosystems and collaborative platforms 
that allow for the sharing of data, resources, and findings. Examples include the 
Interconnected Science Ecosystem (INTERSECT) and the DOE Energy Materials 
Network. 

Experimental and Computational Integration: 

o Projects often combine experimental capabilities with computational models and 
simulations to enhance the discovery process. This is evident in initiatives like the 
Materials Discovery Research Institute (MDRI) and the NSF Q-Amase-i Quantum 
Foundry. 
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Modular and Scalable Systems: 

o The development of modular, scalable systems that can be easily adapted or expanded is 
a common theme. For instance, the Molecule Maker Lab features automated modular 
synthesis capabilities. 

Funding and Infrastructure Development: 

o Significant investment in new facilities and infrastructure, such as the $180M Integrative 
Sciences Building at NC State University, underscores the commitment to advancing 
materials science research. 

National and Institutional Support: 

o Many projects receive support from national programs and major research institutions, 
reflecting the strategic importance of materials science. Initiatives like Nano4EARTH and 
the NIST Materials Genome Program illustrate this support. 

Emerging Technologies and Frontier Research: 

 The focus on cutting-edge technologies and frontier research areas, such as quantum materials 
and AI-guided material synthesis, highlights the forward-looking nature of these projects. 
Examples include the NSF Q-Amase-i Quantum Foundry and AI-enabled materials discovery 
projects. 

The common themes across electronic and photonic materials projects highlight a concerted 
effort to integrate AI/ML, automate processes, and build robust data infrastructures. There is a 
clear emphasis on high-throughput and efficient research methodologies, collaborative 
ecosystems, and the development of modular, scalable systems. The significant investment in 
infrastructure and national support further underscores the strategic importance of these 
research initiatives in advancing materials science. 

Analysis of Autonomous Infrastructure in Electronic and Photonic Materials Projects 

Fully Autonomous: 

o ARES OS 2.0: Full autonomy in software for autonomous experimentation. 
o Adaptive Tunability for Synthesis and Control via Autonomous Learning on Edge (AT 

SCALE): Full autonomy with AI/ML enabling real-time decisions. 
o Interconnected Science Ecosystem (INTERSECT): Fully integrated AI/ML workflows 

across multiple materials theory, synthesis, and characterization activities. 

High Integration of AI/ML: 

o Materials Discovery Research Institute (MDRI): Integration of AI/ML to help guide 
experimental, computational, and data infrastructure eƯorts. 

o Molecule Maker Lab and Molecule Maker Lab Institute: Automated Modular Synthesis 
integrated with AI for discovery and materials characterization. 
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o Materials Characterization and Processing Center: Integration of data infrastructure, 
computing, high throughput, and experimental platforms with AI/ML, ML on edge, 
automation, and deep learning. 

o CMU Cloud Lab, Pittsburgh Supercomputing Center, others: High levels of automation 
in experimental, computational, and data capabilities. 

Moderate to Strong AI/ML Integration: 

o AI-enabled materials discovery: AI-enabled framework with SME in the loop and 
Bayesian optimization for high throughput testing. 

o 2D Crystal Consortium Materials Innovation Platform: Thin film synthesis tools operate 
via computer control without feedback currently from AI/ML. 

o NC State Self-Driving Fluidic Labs: Supervised autonomy in experimental and 
computational aspects. 

o NSF Q-Amase-i Quantum Foundry: Small but growing integration of experimental, 
computational, and data infrastructure. 

Mixed or Emerging Integration: 

o NIST Materials Genome Program: Mixed integration of experimental, computational, and 
data infrastructure with some AI/ML capabilities. 

o CORPORATE RESEARCH- Lockheed Martin: Partial integration of AI/ML to guide 
materials discovery and optimization. 

o Deposition and Semiverse Solutions Product Groups: Early stages of integrating 
experimental, computational, and data infrastructure with AI/ML. 

Minimal or Developing: 

o Alabama Materials Institute: Experimental materials characterization without specified 
AI/ML integration. 

o Designing Materials to Revolutionize and Engineer our Future: Less than 10% AI/ML 
integration at this stage. 

o Workshops on Self-Driving Labs: Combines human intervention with AI-driven 
experimental and data infrastructure eƯorts. 

o $180M Integrative Sciences Building at NC State University: Supervised autonomy and 
full automation in development. 

No AI/ML Integration Specified: 

o Nano4EARTH: National Nanotechnology Challenge without specified AI/ML integration. 
o DOE Energy Materials Network: Miscellaneous integration of experimental, 

computational, and data infrastructure capabilities. 
o Materials Data Facility: Data infrastructure without specified AI/ML integration. 
o Developing an MGI relevant Strategy and Roadmap for the DoD: N/A (integration not 

specified). 
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Conclusion 

The analysis of electronic and photonic materials projects shows a significant focus on 
integrating AI/ML for automation, especially in high-throughput experimentation, synthesis 
optimization, and data management. While some projects have achieved full autonomy, others 
are in various stages of adopting AI/ML technologies. The overall trend indicates a growing 
emphasis on using AI/ML to accelerate discovery and innovation in the field of electronic and 
photonic materials. 

Semiconductor Related EƯorts 

Based on the provided data, the following efforts have a focus on semiconductors: 

Semiconductor, advanced packaging and assembly 

o Type of Capability: Experimental, future data infrastructure 
o Level of Automation: AI/ML manufacturing with new materials 

CHIPS Manufacturing USA Institute - Digital Twins for Semiconductor Manufacturing 

o Type of Capability: Unspecified in provided data 

NC State Self-Driving Fluidic Labs (Artificial Chemist, AlphaFlow, SmartDope, and Fast-Cat) 

o Website URL: https://www.abolhasanilab.com/ 
o Type of Capability: Both Experimental and Computational 
o Level of Automation: Supervised autonomy 

Deposition and Semiverse Solutions Product Groups 

o Website URL: https://www.lamresearch.com/semiverse-solutions/ and 
https://www.lamresearch.com/products/our-processes/deposition/ 

o Type of Capability: Experimental and computational and data infrastructure 
o Level of Automation: Early stages 

These efforts specifically mention semiconductors or related technologies in their focus.  

 

RAW DATA 

Name of Project / 
Platform / Center / 
etc. 

Website URL (if available) 

Type of Capability(ies) 
– Experimental, 
Computational, Data 
Infrastructure, etc 

Level of automation or 
autonomy (integration of 
AI/ML to help guide or 
direct experiments) (N/A 
if none) 
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Experimental, 
Computational, Data 
Infrastructure, funding High 

Materials Discovery 
Research Institute 
(MDRI) 

https://ul.org/research/materi
als-discovery 

All the above, 
experimental, 
computational and data 
Infrastructure 

integration of AI/ML to 
help guide 

Interconnected 
Science Ecosystem 

https://www.ornl.gov/intersec
t 

Autonomous Chemistry 
Laboratory, 
Autonomous Chemical 
Flow Reactors, 
Command and Control 
Open Infrastructure, 
Data Abstraction Layer,  

Development and 
Integration of AI/ML into 
an open architecture to 
interconnect autonomous 
lab capabilities across 
science domains 

ARES OS 2.0 
https://github.com/AFRL-
ARES/ARES_OS 

Software for 
autonomous 
experimentation  Full 

Nano4EARTH 
https://www.nano.gov/nano4
EARTH 

National 
Nanotechnology 
Challenge  

Alabama Materials 
Institute https://ami.ua.edu/ 

Experimental Materials 
Characterization N/A 

Workshops on Self-
Driving Labs 

https://events.mcs.cmu.edu/
ac-sdl_workshop/ and 
https://research.ncsu.edu/fut
urelabsworkshop/  

Eventually will be 
experimental and data 
infrastructure, 
combined. 

Human intervention as 
well as AI-driven 

OpenMSIStream, 
PARADIM, HT-MAX, 
VariMat  

Data Infrastructure, 
data streaming, stream 
processing, decision 
orchestration 

integration of data 
collection, ML decision 
making, ML decision 
deployment, instrument 
control 

semiconductor, 
advanced packaging 
and assembly  

experimental, future 
data infrastructure 

AI/ML manufacturing with 
new materials 

DOE Energy Materials 
Network 

https://www.energy.gov/eere/
energy-materials- All of the above Misc 
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network/energy-materials-
network 

Materials Data Facility 
https://materialsdatafacility.o
rg Data infrastructure  

NIST Materials 
Genome Program www.nist.gov/mgi 

Experimental, 
Computational, Data 
Infrastructure Mixed 

CORPORATE 
RESEARCH- 
Lockheed Martin  

Experimental / 
Computational  / Data 

AI/ML to guide materials 
discovery and 
Generative/Reinforcemen
t for Optimization 

2D Crystal 
Consortium Materials 
Innovation Platform 2dccmip.org 

Experimental, 
Computational, Data 
Infrastructure related to 
Synthesis of 2D 
Materials 

Thin film synthesis tools 
operate via computer 
control but without 
feedback currently from 
AI/ML. 

Designing Materials to 
Revolutionize and 
Engineer our Future DMREF.org 

Experimental, 
Computational, Data 
Infrastructure 

Less than 10% at this 
stage 

AI-enabled materials 
discovery  

https://www.jhuapl.edu/news
/news-releases/230503-ai-
discovers-novel-
superconductor 

Experimental 
(synthesis, 
characterization), 
Computational 
(structure prediction, AI 
models, frameworks for 
discovery) 

AI-enabled framework 
with SME in the loop, 
bayesian optimization 
enabled high throughput 
testing 

Molecule Maker Lab 
and Molecule Maker 
Lab Institute moleculemaker.org 

Automated Modular 
Synthesis, AI-Guided 
Closed-Loop Discovery, 
Functional 
Experimentation and 
Materials 
Characterization, Data 
Infrastructure (NCSA) 

Automated Modular 
Synthesis integrated with 
AI 

CHIPS Manufacturing 
USA Institute - Digital 
Twins for 
Semiconductor 
Manufacturing 

https://www.nist.gov/chips/re
search-development-
programs/chips-
manufacturing-usa-institute   

$180M Integrative 
Sciences Building at 
NC State University 
(under construction) 

https://provost.ncsu.edu/univ
ersity-interdisciplinary-
programs/isb/ 

One floor of 
Automated/Autonomou
s Chemistry Labs with 
in-house 
Computational 
infrastructure 

Supervised autonomy and 
full automation 

NC State Self-Driving 
Fluidic Labs (Artificial 

https://www.abolhasanilab.c
om/ 

Both Experimental and 
Computational Supervised autonomy 
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Chemist, AlphaFlow, 
SmartDope, and Fast-
Cat) 

Materials 
Characterization and 
Processing Center 

https://engineering.jhu.edu/
MCP/ 

Integration of data 
infrastructure, 
computing, high 
throughput, and 
experimental platforms 

AI/ML, ML on edge, 
automation, deep 
learning, FAIR data 

Adaptive Tunability for 
Synthesis and Control 
via Autonomous 
Learning on Edge (AT 
SCALE) 

https://www.pnnl.gov/project
s/at-
scale/about#:~:text=Adaptive
%20Tunability%20for%20Sy
nthesis%20and%20Control
%20via%20Autonomous,mat
erials%20synthesis%20by%2
0developing%20closed-
loop%20autonomous%20pre
cision%20synthesis. 

Experimental, Data, 
Computational, AI/ML 

full autonomy, with AI/ML 
enabling real-time 
decisions 

NSF Q-Amase-i 
Quantum Foundry 

https://quantumfoundry.ucsb
.edu/ 

Experimental, 
computational, and 
data infrastructure Small but growing 

Deposition and 
Semiverse Solutions 
Product Groups 

https://www.lamresearch.co
m/semiverse-solutions/ 
https://www.lamresearch.co
m/products/our-
processes/deposition/ 

Experimental and 
computational and data 
infrastructure Early stages 

Interconnected 
Science Ecosystem 
(INTERSECT) 

https://www.ornl.gov/intersec
t 

Experimental + 
Computational + Data 
Infrastructure 

Fully integrated AI/ML 
workflows across multiple 
materials theory, 
synthesis, and 
characterization activities 

The Materials 
Discovery Research 
Institute  www.ul.org 

Data Infrastructure, 
Theoretical and 
Computational, 
Automated Synthesis 
Capabilities, Digital-
First Laboratories  Building Capabilities  

CMU Cloud Lab, 
Pittsburgh 
Supercomputing 
Center, others 

https://cloudlab.cmu.edu/, 
https://www.psc.edu/ 

Experimental, 
Computation, Data high 

  

Developing an MGI 
relevant Strategy and 
Roadmap for the DoD N/A 
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FROM REGISTRATION DATA: BARRIERS TO ADOPTION OF AUTONOMOUS 

AND AUTOMATED LABORATORIES 

Addressing these barriers will require concerted efforts in standardization, education, 
interdisciplinary collaboration, and technological innovation to advance the adoption of 
autonomous and automated laboratories across scientific disciplines: 

Vendor Fragmentation and Support: 

o Robotic equipment often comes from various vendors, leading to integration 
challenges. 

o Maintenance and troubleshooting may require vendor-specific expertise, causing 
dependency. 

o A single malfunction can halt entire workflows, highlighting the fragility of 
integrated systems. 

Complexity and Interdisciplinary Expertise: 

o Developing autonomous systems requires expertise across AI/ML, robotics, data 
science, and domain-specific knowledge. 

o Limited commercial availability necessitates research groups to develop systems 
internally, which is resource-intensive and requires diverse skills. 

Technical Standards and Integration: 

o Lack of standardized APIs and interfaces across equipment hinders seamless 
integration and automation. 

o Inconsistent hardware standards prevent plug-and-play integration of new 
instruments, complicating system scalability and adaptability. 

Infrastructure and Resource Constraints: 

o Existing computing and storage infrastructures may not be optimized for handling 
large volumes of experimental data generated by automated systems. 

o Physical lab spaces and power requirements may not support the demands of 
automated workflows, especially in older facilities. 

Data Management and Sharing: 

o Challenges in managing, sharing, and standardizing data formats across different 
laboratories and institutions. 

o Issues with data security, access controls, and the interoperability needed for 
collaborative research efforts. 
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Validation and Certification: 

o Establishing trust in automated systems requires rigorous validation of results and 
certification processes. 

o Ensuring that autonomous systems produce reliable and reproducible data that 
meet industry and regulatory standards. 

Skills Gap and Workforce Training: 

o Shortage of professionals with combined expertise in experimental science, 
AI/ML, and automation technologies. 

o Need for comprehensive training programs to bridge the gap between traditional 
experimental techniques and autonomous methodologies. 

Cultural and Educational Challenges: 

o Academic and industry cultures still favor traditional methods over autonomous 
systems, affecting adoption rates. 

o Educational curricula often do not adequately prepare students and researchers in 
the necessary interdisciplinary skills for autonomous laboratories. 

o Incentive structures in academia may prioritize short-term gains over long-term 
infrastructure development. 

Resistance to Change and Cultural Mindset: 

o Inertia in adopting new technologies and methodologies within academic and 
industrial research communities. 

o Resistance to moving away from traditional Edisonian approaches to more 
automated, data-driven methodologies. 

RAW DATA 

Beyond funding limitations, what are the barriers to large-scale 
adoption of autonomous and automated laboratories 

Materials class the capability 
addresses (more than one 
possible) - Selected Choice 

1) Robotic equipment necessary is typically from a variety of 
vendors. Often troubleshooting and maintenance can be done only 
by the vendor.  A single flaw in the chain of robotics can paralyze the 
entire sequence.  Thus the strength of the automation sequence is 
also subject to the individual parts. 
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1. Autonomous and automated laboratories currently have to be 
designed and developed by research groups; there are few 
examples where these systems are commercially available from 
vendors. As a result, research teams developing AMII must have 
broad expertise in data science, AI/ML, robotics, equipment design 
and construction as well as the relevant materials domain 
knowledge. This can be diƯicult to achieve outside national labs. 
2. Most of the current research in AMII is being done by 
theory/computational groups who are broadening out to include 
ML/AI to accelerate simulations and make predictions based oƯ of 
limited training data.  Experimental groups need to be more involved 
both to generate larger data sets for training and to develop 
feedback systems needed for autonomous operation. 
3. Development of AMII requires significant time/eƯort which may 
not be rewarded in the current tenure track system.  It is easier to get 
high impact publications by having an army of graduate students 
working manually on a problem than spending time to develop AMII.  
What can be done to incentivize faculty to think long term about 
advancements in research infrastructure?  

Electronic Materials 

A collective eƯorts to integrate extendable software/codes that are 
developed for automated labs 

Ceramics 
Solid State and Materials 
Chemistry 

A principle challenge in developing autonomous laboratories is 
vendor buy-in.  To create autonomous workflows, we must be able 
to autonomously control instrumentation within the workflow.  This 
requires vendors to create APIs that allow remote control of 
instruments and remote access to instrument data.  Developing 
such APIs that do not reveal proprietary information is possible, but 
requires vendor eƯort.  A principle barrier is creating workarounds 
for vendors who are not yet engaged or supportive of developing 
such autonomous laboratories. 

Electronic Materials 
Materials in/for Condensed Matter 
Physics 
Metallic Nanostructures 
Metals 
Polymers 
Solid State and Materials 
Chemistry 

Access to automated laboratories, universal standards across 
automated labs and infrastructure to collect and share data. 

Biomaterials 
Polymers 

Buy-in and training of faculty at smaller colleges.    

Change in culture; need for education and training; concerns related 
to safety and safe use. 

Biomaterials 
Electronic Materials 
Solid State and Materials 
Chemistry 

Coordinated eƯorts to establish interfaces that work for lab and 
industrial scale R&D 

Biomaterials 
Ceramics 
Electronic Materials 
Materials in/for Condensed Matter 
Physics 
Metallic Nanostructures 
Metals 
Photonic Materials 
Polymers 
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Solid State and Materials 
Chemistry 

Data management policies including sharing between 
organizations, access controls, retention and security. Propriety 
data formats (instruments), network speed (for very large files). 

Polymers 

Design of discovery workflows that balance complex observables 
and distant rewards 

  

equipment, methodology, and infrastructure for autonomous 
polymer synthesis and materials and mechanical characterization  

Polymers 

Flexibility of autonomous laboratories -- approaches must be 
capable of covering a wide range of materials and applications.  
Niche autonomous platforms will rapidly become obsolete.  
Physical lab space, infrastructure, and workforce training are 
additional barriers. 

Metallic Nanostructures 
Metals 

Other - Energetic Materials 

Flexible, low-cost, reproducible, and accessible automation tools 
for all. Identifying the biggest challenge of diƯerent testbed 
materials and focusing on developing a low-cost and accessible 
automation tool to address it.  
Digitalization of existing tools in chemistry and materials science 
labs. 

Electronic Materials 
Metallic Nanostructures 
Metals 
Other - Fine Chemicals 
Photonic Materials 
Solid State and Materials 
Chemistry 

Fully autonomous laboratories can only be developed for very 
targeted niche solutions, and in those niche applications they are 
very impressive.  But a more holistic, generalizable approach to 
accelerated, multiobjective materials & process optimization  can 
be achieved without full autonomy, by taking advantage of keeping 
an expert in the loop.   

Metallic Nanostructures 

Metals 

I haven't seen a lot in the automated handling of dry powdered 
materials, moving to say a sintering state to create a ceramic type 
material - trickier than liquids handling.  Then, I've heard reports that 
when synthesis is AI/ML automated driven, the characterization 
techniques might not be suƯicient enough to prove the newness or 
value of the material.  Just thoughts. 

Polymers 

I understand that there are challenges in lacks of standards, APIs, 
and other interfaces for equipment that hampers automation, plus 
improvements needed in AI-driven and modeling-driven control, 
calibration, characterization, and analysis. 

  

i. Computing Infrastructure: Existing High-Performance Computing 
(HPC) architectures are suboptimal for experimental data analytics, 
necessitating high-availability, deterministic networking, and 
computing resources. The prevalent centralized, scheduler-based 
model impinges upon automated workflows due to network 
congestion and resource availability. A bespoke computational 
infrastructure, tailored for scientific workloads, should be 
developed, incorporating high-availability, self-healing, and load-
balancing functionalities via Kubernetes or similar orchestrators, 
thereby facilitating continuous deployment and AI/ML-based 

Ceramics 

Solid State and Materials 
Chemistry 
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control over data flows. 
ii. Storage Infrastructure: Achieving Findable, Accessible, 
Interoperable, and Reusable (FAIR) scientific data is a pressing 
issue. Developing open-source, rigorously documented file formats 
and metadata schemas is crucial.30 Community-wide 
standardization, or at least interoperability standards, are essential, 
along with platforms for secure data sharing and hosting.  
iii. Skill Development and Science Education: The skill set of the 
contemporary experimental scientist is increasingly computation-
centric. Thus, curricula must be restructured to include core 
computational tools like data analytics and AI/ML techniques 
pertinent to data collection and analysis across scientific 
disciplines.11,16 
iv. Interdisciplinary Collaboration: The facile adaptability of AI 
methods to scientific questions raises concerns, especially given 
the propensity for overfitting in machine learning models that can 
masquerade as genuine understanding. A concerted eƯort to break 
disciplinary silos is imperative for the co-design of machine learning 
techniques and validation methodologies that respect both the 
foundational principles of ML and parsimony required for materials 
science. 
v. Open Science and Hardware: The proprietary nature of scientific 
instrumentation hinders technique innovation. A shift towards an 
open-source community development model, compliant with 
standards like IEEE and ISO for data transfer and curation as well as 
experimental protocols (i.e. ASTM-like), is necessary. Purchasing 
power should be leveraged to demand Software Development Kits 
(SDKs) and Application Programming Interfaces (APIs) from 
manufacturers, thereby lowering barriers to automation and 
interoperability. Moreover, codebases should be well-documented 
and architecturally sound to be accessible to scientists with limited 
coding expertise. 
If large-scale adoption means wide-spread across the community, 
then barriers are IP, tool sets that address a wide array of material 
synthesis/metrology needs, and accessible curriculum/training.  
If large-scale adoption means extension to high-volume 
manufacturing from outcomes of autonomous labs, then 
validation/verification and integration concepts are most critical to 
fold in to the materials search and co-optimization. 
Training/curriculum are critical here too.  

  

Inadequate support for team science approaches to challenging 
materials problems via the use of autonomous laboratories 

  

Inertia in the academic and corporate materials communities 

Ceramics 
Electronic Materials 
Materials in/for Condensed Matter 
Physics 
Metallic Nanostructures 
Metals 
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Photonic Materials 
Solid State and Materials 
Chemistry 

infrastructure gaps, knowledge gaps, interoperability, governance 
and safety aspects. 

Metallic Nanostructures 
Metals 

Infrastructure.  From a defense perspective many of our buildings 
and labs need upgrades to support the power and potential space 
needs of automation. 

  

-It is challenging for independent groups to develop autonomous 
research systems, so it is necessary to determine processes and 
standards for collaborating and sharing existing autonomous 
systems. 
-A lack of consistent hardware standards that allow the addition of 
new instruments in a plug-and-play fashion is a key challenge. 
-Coherent pedagogical materials that the community can share and 
build upon would aid in workforce and autonomous system 
development. 

Polymers 

Solid State and Materials 
Chemistry 

Lack of training.  Lack of commercial autonomous laboratory 
equipment. 

  

legacy platforms, integration of AI/ML into existing platforms, 
communication between instrumentation 

Electronic Materials 
Materials in/for Condensed Matter 
Physics 
Metallic Nanostructures 
Metals 
Photonic Materials 

Mindset is a big one, many university researchers, national 
laboratories, and industry still rely on Edisonian research. We must 
break out of this archaic mindset.  
 
Equipment/technology - while things like combinatorial chemistry 
has been utilized by Pharma for decades, it is not amenable to 
materials like metals and/or ceramics.  
 
Workforce - One of the reasons guys like Alan Gaspuru has been so 
successful at Univ of Toronto is because he recruited much of the 
top talent in AE out of the U.S.. We must not only train this next 
generation of autonomous materials scientists, but also retain 
them. Not easy.  

Ceramics 
Metallic Nanostructures 

Metals 

Policy and acquisition changes to promote data sharing and 
protection 

Biomaterials 
Ceramics 
Electronic Materials 
Materials in/for Condensed Matter 
Physics 
Metallic Nanostructures 
Metals 
Other 
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Photonic Materials 
Polymers 
Solid State and Materials 
Chemistry 

Protocols for round-robin experiments, automated thin film 
synthesis, automated integration into microsystems and automated 
analysis of integrated systems 

Ceramics 
Electronic Materials 
Metallic Nanostructures 
Metals 

Some method, such as catalyst testing are quite diƯicult to fully 
automate. 
Serial operation of individual components of an entire workstream 
can create weakness in productivity. 
Some components are vendor maintained and troubleshooting can 
depend entirely on vendor availability or parts availability. 

Ceramics 
Metallic Nanostructures 
Metals 
Other 
Solid State and Materials 
Chemistry 

Standardization of data format, democratized data sharing platform, 
striking a balance between open source and monetization of 
information and data from autonomous laboratories. Instrument 
companies must participate and be incentivized. 

  

testing in relevant manufacturing device structures Electronic Materials 
The ability to synthesize (primary and secondary) bulk (≥100 gms) 
metallic and ceramic candidate alloys 'on-demand' (≤1 hr after 
composition and/or microstructure specification) is essential for 
automated laboratories but is not currently possible with the current 
state-of-the-art.  

  

The diversity of materials research. 
Biomaterials 
Polymers 

The two major barriers, beyond funding, are: 
1) physics based models that can guide the AI/ML for materials 
discovery 
2) scientists lacking coding and data-analysis capabilities to make 
autonomous/automated labs viable.   

Ceramics 

There is a need for relatively large multidisciplinary teams with a 
proven track record of working together to make autonomous and 
automated laboratories in an institution a reality. Often, the eƯorts 
and resources are distributed to places without these large teams.  

Materials in/for Condensed Matter 
Physics 
Metallic Nanostructures 
Metals 

There is still a lack of knowledge of physics of materials under 
extremely high strain rate conditions (ballistic, blast, other), so until 
we can better understand the fundamental physics of how materials 
respond under these extreme conditions, we cannot expect to 
automate the development of materials to suit these applications.  

Metallic Nanostructures 

Metals 

Training eƯiciency 

Ceramics 
Metallic Nanostructures 
Metals 
Polymers 
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Solid State and Materials 
Chemistry 

Training: The requisite skills in both instrument use and 
development, and machine learning itself, represent non-trivial 
barriers 
Instruments: There is a lack of readily available platforms that can 
enable the specific types of experiments that are of interest to the 
soft materials community 
Surrogate properties: Accelerating research relies on having 
surrogate properties that can more readily be measured. 
Identification of robust surrogate properties for research questions 
of interest represents a limitation. 

Biomaterials 

Polymers 

Trust and Certification on material properties were performed with 
the rigor and fidelity required for traceability. 

Ceramics 
Electronic Materials 
Materials in/for Condensed Matter 
Physics 
Metallic Nanostructures 
Metals 
Photonic Materials 
Solid State and Materials 
Chemistry 

Workforce (or lack thereof)  Other - soft matter 

Workforce education. 

Materials in/for Condensed Matter 
Physics 
Polymers 
Solid State and Materials 
Chemistry 

Workforce. 

Biomaterials 
Ceramics 
Electronic Materials 
Materials in/for Condensed Matter 
Physics 
Metallic Nanostructures 
Metals 
Photonic Materials 
Polymers 
Solid State and Materials 
Chemistry 
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FROM REGISTRATION DATA: MISSING CAPABILITIES 

Several common themes emerge regarding the development and challenges associated with 
Autonomous Materials Innovation Infrastructure (AMII). These themes underscore the 
multifaceted approach required for advancing AMII, involving technological, infrastructural, 
educational, and collaborative efforts. The integration of automation, data management, high-
throughput capabilities, and interdisciplinary collaboration is crucial for overcoming existing gaps 
and accelerating the deployment of new materials and technologies: 

Automation and Robotics: 

o Essential for synthesis, data-driven frameworks, and closed-loop feedback 
systems. 

o Challenges in automating synthesis procedures where unexpected phenomena 
occur. 

o Need for reproducible automation technologies for accelerated synthesis. 

Data Infrastructure and Management: 

o Requirement for a centralized data repository, FAIR data principles, and 
interoperability. 

o Importance of AI-ready data infrastructure and shareable data infrastructure. 
o Automated data extraction and handling of multi-modal data. 

High-Throughput Experimentation: 

o Automated labs with high-throughput characterization. 
o Lack of infrastructure for autonomous synthesis and characterization. 
o Coordinated network of synthetic capabilities for rapid production and testing. 

Integration and Interoperability: 

o Need for hardware/software and hardware/hardware interfaces. 
o Co-design of hardware and software to ensure microstructurally sensitive 

autonomous platforms. 
o Standards for hardware integration and common digital infrastructure. 

Collaboration and Democratization: 

o Close collaboration with tool vendors for system design and manufacturing. 
o Democratizing access to resources, data, AI infrastructure, and education. 
o Establishing connections between education (especially at smaller colleges) and 

research. 
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Challenges in Material Translation: 

o Translating material properties into device functionality. 
o Addressing the "Valley of Death" between materials discovery and deployment. 
o Emphasis on finding synthetic routes alongside new materials discovery. 

Educational and Workforce Development: 

o Expanding efforts in education and workforce development to support AMII. 
o Intellectual awareness and training in emerging toolsets for materials scientists. 

Performance and Testing: 

o Proper interpretation of materials performance data and filtering good versus bad 
data. 

o Extended testing of catalytic materials and performance testing setup. 

Societal and Structural Issues: 

o Need for systems interoperability and addressing societal-level grand challenges. 
o Interoperable decision deployment infrastructure and community integration. 

Gaps and Recommendations: 

o Explicit connections between new materials development and design integration. 
o Growing library of open access databases for AI models in self-driving labs. 
o Deployment of modules for adapting existing infrastructure to automated tool 

suites. 

RAW DATA 
 

Let us know if you have initial thoughts on what specific capabilities are 
missing from the Autonomous Materials Innovation Infrastructure (AMII) 
to truly accelerate the materials development continuum (design through 
manufacture.) 

Materials class the 
capability addresses (more 
than one possible) - 
Selected Choice 

Automated data-driven frameworks are essential for development of 
AMII. 

  

Extraction and processing of critical minerals (e.g., lithium, graphite, etc.)   
1) Automation of synthesis procedures where unexpected phenomena 
occur requires attention (e.g unexpected precipitation or other phase 
separation events) 
2) transfer and setup of materials for analysis and performance testing is 
sometimes not trivial - especially for extended testing of catalytic 
materials 
3) Proper interpretation of materials performance data and filtering for 
good versus bad data is diƯicult to automate 
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The development of AMII will require close collaboration with tool vendors 
to design and manufacture systems that incorporate robotics and enable 
closed loop feedback from AI/ML algorithms.  For processing tools, in 
situ characterization techniques are needed for timely closed loop 
feedback.  

Electronic Materials 

There are numerous use inspired materials research activities where there 
is a desire to advance future technologies based on fundamental 
materials science.  While these activities yield many exotic materials, 
there is a grand challenging in translating material property into device 
functionality.  There needs to be an expanded eƯort in understanding how 
to fabricate devices out of contemporary materials without disrupting 
desired material properties to accelerate technological advancements.  

Electronic Materials 
Materials in/for Condensed 
Matter Physics 
Metallic Nanostructures 
Metals 
Polymers 
Solid State and Materials 
Chemistry 

Automated labs coupled with high-throughput characterization.  
Biomaterials 
Polymers 

Establishing a sustained connection between undergraduate education 
(at small colleges) with low overhead.  

  

Need for democratizing access to resources, common data and AI 
infrastructure, education and workforce development. 

Biomaterials 
Electronic Materials 
Solid State and Materials 
Chemistry 

Hardware/Software interfaces, hardware/hardware interfaces 

Biomaterials 
Ceramics 
Electronic Materials 
Materials in/for Condensed 
Matter Physics 
Metallic Nanostructures 
Metals 
Photonic Materials 
Polymers 
Solid State and Materials 
Chemistry 

Advances in physics based ML. Polymers 
We lack the infrastructure for autonomous synthesis and characterization 
of polymer materials.   

Polymers 

Explicit connection between new materials development and design 
integration/optimization is a major gap preventing rapid deployment.  
Legacy part/process qualification procedures are also a significant 
bottleneck.  

Metallic Nanostructures 
Metals 

Other - Energetic Materials 

Reproducible automation technologies for accelerated and miniaturized 
synthesis of emerging advanced functional materials. 

Electronic Materials 
Metallic Nanostructures 
Metals 
Other - Fine Chemicals 
Photonic Materials 
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Solid State and Materials 
Chemistry 

As we outline in our article on "Machine Learning for material science: 
barriers to adoption" [Matter, 2023], there are four broad categories of 
gaps: (a) intellectual awareness on the part of materials scientists 
regarding the emerging toolsets, (b) infrastructural resources both in 
terms of automated high-throughput experimentation and automated 
data management, (c) algorithms with embedded physical guard rails, 
and (d) psychological trust in the novel approaches. 

Metallic Nanostructures 

Metals 

I am one of the co-host for a workshop conducted at U Chicago - we have 
a manuscript regarding "Materials Laboratories of the Future for Alloys, 
Amorphous, and Composite Materials" -  the major gas are identified 
there.  

Ceramics 

Solid State and Materials 
Chemistry 

- more extensive training datasets including bad/failed material synthesis 
- deployable modules for adapting existing infrastructure to automated 
tool suites 
- shared central physical facilities to pilot autonomous materials 
experiments. These may best be housed at one or more national labs or a 
new national institute.  
- growing library of open access database for AI models for self-driving 
labs 

  

Substantial autonomous and automated laboratories    

A centralized data repository that has both FAIR data and siloed data. 

Ceramics 
Electronic Materials 
Materials in/for Condensed 
Matter Physics 
Metallic Nanostructures 
Metals 
Photonic Materials 
Solid State and Materials 
Chemistry 

Through going semantics; systems interoperability; appropriate societal-
level Grand Challenges; interoperable decision deployment 
infrastructure; community integration 

Metallic Nanostructures 

Metals 

The ability to optimize for aƯordable manufacturability is as important as 
process and structure.  Process does not equate to manufacturable. 

  

-Coordinated network of synthetic capabilities to allow materials to be 
rapidly produced and tested by several independent systems. 
-Common digital infrastructure to coordinate data sharing and instrument 
control. 
-Standards for hardware integration that industry can follow. 

Polymers 

Solid State and Materials 
Chemistry 

co-design of hardware and software is a huge gap, as well as 
microstructurally sensitive autonomous platforms 

Electronic Materials 
Materials in/for Condensed 
Matter Physics 
Metallic Nanostructures 
Metals 
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Photonic Materials 

With apologies for being vague: Equipment, Software, and Workforce 
Ceramics 
Metallic Nanostructures 
Metals 

Shareable data infrastructure to feed computational tools and process 
models 

Biomaterials 
Ceramics 
Electronic Materials 
Materials in/for Condensed 
Matter Physics 
Metallic Nanostructures 
Metals 
Other 
Photonic Materials 
Polymers 
Solid State and Materials 
Chemistry 

How to go from new material prediction to new material synthesis, 
particularly in thin-film form, and integration into a microsystem. 

Ceramics 
Electronic Materials 
Metallic Nanostructures 
Metals 

Fully automated materials synthesis from solution chemistry 

Ceramics 
Metallic Nanostructures 
Metals 
Other 
Solid State and Materials 
Chemistry 

AI-ready data infrastructure. Rethink materials ontology and establish 
materials representation and database schema aimed for interoperability. 
Develop tools to automate data extraction and deposition process to 
handle multi-modal data and information. Plan for data infrastructure 
sustainability and fund, incentivize and reward the community. 

  

beyond state of the art for device performance and manufacturing 
processes 

Electronic Materials 

On-demand synthesis of bulk metallic and ceramic materials   

There is no existing, impactful, general purpose infrastructure. The status 
of ELNs and LIMS is primitive.  

Biomaterials 
Polymers 

Most approaches to AI/ML that are submitted to my program tend to lack 
the fundamental science and are more focused on high-throughput 
synthesis. While this can lead to discovery of new materials, the lack of 
scientific background limits the broader impact of the experiments to be 
applied to other classes of materials. At the same time, computational 
materials discovery has the power to identify new materials, but the lack 
of emphasis on synthesizability leads to a collection of hypothetical 
materials. More emphasis needs to be placed on finding synthetic routes, 
along with new materials.  

Ceramics 
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Most of the capabilities in AMII seem to concentrate on discovering 
chemical space, often in materials that can be synthesized with wet 
chemistry or in very small quantities or in the class of soft materials, 
without taking into account the eƯect of processing/manufacturing, 
microstructure, and not in bulk dimensions relevant to industry (the 
smallest dimension is larger than a centimeter). We need more 
investment in high throughput hard materials fabrication/processing, 
microstructural control, defect control, and materials fabrication in bulk 
scales.   

Materials in/for Condensed 
Matter Physics 

Metallic Nanostructures 

Metals 

Integration with commercial Multiphysics and high length scale 
engineering models 

Ceramics 
Electronic Materials 
Materials in/for Condensed 
Matter Physics 
Metallic Nanostructures 
Metals 
Photonic Materials 
Solid State and Materials 
Chemistry 

I am eager to learn more about what capabilities are available in the AMII 

Materials in/for Condensed 
Matter Physics 
Polymers 
Solid State and Materials 
Chemistry 

'Valley of Death' between materials discovery and deployment. 

Biomaterials 
Ceramics 
Electronic Materials 
Materials in/for Condensed 
Matter Physics 
Metallic Nanostructures 
Metals 
Photonic Materials 
Polymers 
Solid State and Materials 
Chemistry 
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FROM REGISTRATION DATA – SUGGESTED MGI  CHALLENGE IDEAS 

AND THEMES 
Advanced Materials Development: 

 Tailored materials for specific applications like ion transport, gas separation, thermal 
management, and water purification. 

 Development of materials free from rare earth elements, heavy metals, and other scarce 
resources. 

 Focus on sustainable and recyclable materials, including alternatives to polyolefins and 
PFAS removal from groundwater. 

 Emphasis on novel materials such as high-entropy alloys, superconductors, and quantum 
materials. 

These specific themes highlight the diverse and targeted efforts in the advanced materials 
development space, focusing on sustainability, efficiency, and innovative applications across 
various fields. They also highlight the interdisciplinary nature of advanced materials development 
and underscore the various material classes involved in addressing these advanced 
technological and scientific challenges. 

Selective Transport and Separation: 

o Ionic and Molecular Species Separation: Development of materials with high selectivity 
ratios for ion transport, such as Li/Na separation. (Related materials: Polymers) 

o Gas Separations: Materials designed for specific gas separation applications. 
o PFAS Removal: Materials tailored for removing per- and polyfluoroalkyl substances 

(PFAS) from groundwater. (Related materials: Biomaterials, Polymers) 

Thermal Management: 

o Materials for Thermal Management: Development of materials aimed at improving 
thermal management, particularly addressing urban heat impacts. (Related materials: 
Polymers) 

Sustainable and Alternative Materials: 

o Earth-Abundant Alternatives: Finding substitutes for rare earth elements used in 
magnetic materials. 

o Heavy Metal-Free Optical Materials: Developing optical materials that do not rely on 
heavy metals, such as certain perovskites and quantum dots (QDs). (Related materials: 
Ceramics, Polymers) 

o PGE-Free Catalysts: Creating catalysts that do not contain platinum group elements 
(PGE). 

o Low-Energy Transistors: Developing transistors that require minimal energy for both 
production and operation. 
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o Recyclable/Upcyclable Polyolefin Alternatives: Discovery of materials that are 
recyclable or upcyclable as alternatives to conventional polyolefins. (Related materials: 
Polymers) 

Water Harvesting and Security: 

o Chemically Specific Materials: Development of materials specifically for water 
harvesting, filtering, and ensuring water security. (Related materials: Polymers) 

Innovative Synthesis Methods: 

o Physics-Based Models for Synthesis: Enhancing models for chemical synthesis 
methods like sol-gel, solid state reaction, and molten salt. (Related materials: Ceramics) 

o Physical Deposition Techniques: Advanced physical deposition methods such as 
Atomic Layer Deposition (ALD), Molecular Beam Epitaxy (MBE), and Physical Vapor 
Deposition (PVD). (Related materials: Ceramics) 

Record-Setting Materials: 

o High-Temperature Materials: Autonomous development of materials with extremely 
high melting points (e.g., refractory materials like HfCN). (Related materials: Ceramics, 
Metallic Nanostructures, Metals) 

o High-Ductility Alloys: Creating high entropy alloys (HEAs) with exceptional ductility at 
room temperature. (Related materials: Metallic Nanostructures, Metals) 

Autonomous and AI-Driven Development: 

o AI-Driven Tools for Data Mining and Models: Utilization of AI to accelerate the co-design 
of materials for specific applications. (Related materials: Biomaterials, Ceramics, 
Electronic Materials, Materials in/for Condensed Matter Physics, Metallic 
Nanostructures, Metals, Photonic Materials, Polymers, Solid State and Materials 
Chemistry) 

o Fully Autonomous Labs: Development of interoperable, autonomous laboratories for 
automated experimentation and synthesis. (Related materials: Electronic Materials, 
Metallic Nanostructures, Metals, Photonic Materials, Polymers, Solid State and 
Materials Chemistry) 

o Digital Twins and Virtual Environments: Use of digital twins to simulate and optimize 
material properties and processes. (Related materials: Ceramics, Electronic Materials, 
Metallic Nanostructures, Metals) 

Collaborative and Data-Driven Research: 

o Interconnected Ecosystems for Energy Materials: Integrating various experimental and 
computational resources for collaborative research in energy materials. (Related 
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materials: Electronic Materials, Materials in/for Condensed Matter Physics, Metallic 
Nanostructures, Metals, Polymers, Solid State and Materials Chemistry) 

o Community Datasets and FAIR Metrics: Development of interoperable community 
datasets with metrics on FAIR (Findable, Accessible, Interoperable, Reusable) maturity. 
(Related materials: Metallic Nanostructures, Metals) 

o Curated Datasets and Standardized Data Sharing: Creating and sharing standardized 
datasets for machine learning model validation in material science. (Related materials: 
Ceramics, Electronic Materials, Metallic Nanostructures, Metals) 

Workforce Development and Education: 

o Targets for Education and Workforce Development: Measuring and valuing the impact 
of materials research projects on education and workforce readiness. (Related materials: 
Electronic Materials, Materials in/for Condensed Matter Physics, Metallic 
Nanostructures, Metals, Photonic Materials) 

Specific Applications and Goals: 

o Water Purification: Developing materials to remove over 99% of microplastics, heavy 
metals, and other contaminants from water. (Related materials: Ceramics, Electronic 
Materials, Materials in/for Condensed Matter Physics, Metallic Nanostructures, 
Metals, Photonic Materials, Solid State and Materials Chemistry) 

o Energy Storage: Creating new energy storage devices with a 25% increase in capacity. 
(Related materials: Electronic Materials, Metallic Nanostructures, Metals, Polymers, 
Solid State and Materials Chemistry) 

o Carbon Neutrality and Sustainability: Innovations in materials that contribute to carbon 
neutrality and sustainability. (Related materials: Ceramics, Metallic Nanostructures, 
Metals, Polymers, Solid State and Materials Chemistry) 

Data Management and Sharing: 

 Establishment of databases for unsuccessful experiments and community datasets with 
standardized metrics. 

 Development of data policies to facilitate integration and sharing across various platforms 
and instruments. 

 Promotion of FAIR (Findable, Accessible, Interoperable, Reusable) data principles and 
creating a knowledge network to enhance AI-guided experiments. 

Autonomous and AI-driven Research: 

 Development of autonomous labs that support hypothesis formulation, experiment 
management, and synthesis automation. 

 Utilization of AI tools for data mining, process modeling, and accelerating material co-
design. 
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 Integration of digital twins for materials development and real-time metrology 
advancements. 

 Autonomous development of high-performance materials like refractory materials and 
high-ductility alloys. 

Collaboration and Infrastructure: 

 Creation of interconnected ecosystems integrating experimental and computational 
resources from multiple institutions. 

 Fostering collaboration between data scientists and domain experts to enhance material 
development using machine learning. 

 Development of general-purpose tools for material fabrication and validation, and 
enhancing mechanistic understanding for digital twins. 

Workforce Development and Education: 

 Emphasis on workforce-related aspects like demand for specific skill sets and 
preparation. 

 Measurement of how project outputs are used in educational settings and their impact on 
workforce development. 

 Proposals for certification processes similar to ACS standards for practical experience in 
automation and material science. 

National Security and Economic Competitiveness: 

 Focus on materials and technologies that ensure national security and economic 
competitiveness in energy, aerospace, health, and defense sectors. 

 Emphasis on reducing manufacturing costs and increasing manufacturing speed to 
enhance sustainability and supply chain resilience. 

 Development of next-generation semiconductor and advanced packaging technologies 
for economic competitiveness. 

Sustainability and Environmental Impact: 

 Development of materials and technologies for carbon neutrality and efficient energy 
storage. 

 Emphasis on water security through advanced purification methods and the creation of 
low-cost detection and remediation tools for heavy metals. 

 Addressing sustainability in manufacturing and promoting lean manufacturing practices. 

Metrics and Targets: 

 Establishing specific targets for material performance, discovery rates, and the 
functionality of new materials. 
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 Developing quantitative measures for the impact of autonomous laboratories, FAIR data 
realization, and workforce development impacts. 

 Setting goals for reducing development time and demonstrating co-design workflows for 
new materials and manufacturing methods. 

RAW DATA 

We are looking to define numerous, specific, measurable targets that are both 
challenging and achievable in the next 2-5 years. We plan to solicit additional 
input to these specific targets during this June workshop and at the following 
MGI PI meeting (July 30-31, 2024). Here, you may contribute ideas of 
specific, measurable targets to address a challenge in areas such as, but not 
limited to, materials for Water Security, Human Health and Welfare, Energy, 
Economic Competitiveness, or National Security. 

Materials class the 
capability addresses 
(more than one 
possible) - Selected 
Choice 

- Design and manufacture of materials with specific tailored selectivity for 
transport of ions and molecular species: e.g. selectivity ratios &gt; 10 for 
Li/Na separation; One can make similar specifications for gas separations, 
and PFAS removal from groundwater 
- Materials for thermal management, particularly given the rising impact of 
urban heat. 

Biomaterials 

Polymers 

- physics based models for chemical synthesis (sol-gel, solid state reaction, 
molten salt, etc., immature) and physical deposition (ALD, MBE, PVD, etc., 
mature). 
- center for repeatability, analogous to NREL's PV eƯiciency measurements 
- database of unsuccessful experiments 
- Find earth abundant alternatives for rare earth magnetics 
- heavy metal free optical materials (perovskites, QDs, etc.) 
- PGE free catalysts 
- low energy, both production and operation, transistors 

Ceramics 

AI driven tools for data mining, development of data storage and formats, and 
for process models to accelerate the co-design of materials that can be 
integrated for specific applications.   

Biomaterials 
Ceramics 
Electronic Materials 
Materials in/for 
Condensed Matter 
Physics 
Metallic 
Nanostructures 
Metals 
Other 
Photonic Materials 
Polymers 
Solid State and 
Materials Chemistry 

Carbon Neutrality 

Ceramics 
Metallic 
Nanostructures 
Metals 
Polymers 
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Solid State and 
Materials Chemistry 

Chemically  specific materials for water harvesting, filtering, and security. 
Discovery of recyclable/upcyclable alternatives to polyolefins. 

Polymers 

Data policies facilitating integration of data from variety of instruments  Polymers 

Develop a culture and standards around data sharing and creation of a 
knowledge network to capture all the relevant information, which can also 
help AI guide experiments, or limit experiments, etc.  

Biomaterials 
Electronic Materials 
Solid State and 
Materials Chemistry 

Develop an interconnected ecosystem specifically designed to enhance 
energy materials research by seamlessly integrating at least 5 diƯerent types 
of experimental and computational resources (such as databases, software 
tools, spectroscopy, microscopy, and high-performance computing facilities) 
from at least 3 diƯerent research institutions. This ecosystem will enable 
eƯicient data sharing, collaborative research, and advanced analysis specific 
to energy materials. The development will achieve initial resource integration 
tailored for energy materials research within 3 years, and fully complete the 
ecosystem, with comprehensive documentation and user training materials 
within 5 years.  

Electronic Materials 
Materials in/for 
Condensed Matter 
Physics 
Metallic 
Nanostructures 
Metals 
Polymers 
Solid State and 
Materials Chemistry 

Development of community datasets that interoperate (for any challenge) 
with metrics on FAIR maturity; AI-readiness maturity; tools with community 
agreed interoperable formats; full API access.  (Full API access is critical but 
we still get stuck creating GUIs or web versions so people can see the tool 
but projects need to be focused on the API) 
We need to make specific targets for workforce development/education. 
Measure how a project's output is being used in courses at colleges and 
universities or how they contribute to that; and value that. 

Metallic 
Nanostructures 

Metals 

Developments should provide solutions to create and interconnect fully 
autonomous labs that are interoperable. To achieve this goal, solutions must 
be built upon an open architecture to prevent proprietary solutions. 
Autonomous capabilities must support scientist formulate hypothesis, setup 
and manage experiments, automate/optimize both synthesis and 
characterization, and manage next steps based on previous experimental 
workflows. Solutions must provide flexible autonomous solutions for the 
entire ooda loop that may or may not require human intervention. 

Electronic Materials 
Metallic 
Nanostructures 
Metals 
Photonic Materials 
Polymers 
Solid State and 
Materials Chemistry 

DoD/DOE - Autonomous development of world record refractory material 
(Tmp &gt; 4000C current record holder - HfCN) 
DOE - Autonomous development of world record heat-exchanger eƯiciency 
DoD/DOE - Autonomous development of novel ultrahigh ductility high 
entropy alloys (HEAs) with room temperature ductility &gt; 100% (Cantor 
alloy exhibits ~ 71% at RT)  

Ceramics 
Metallic 
Nanostructures 

Metals 

Energy - Autonomous Isotope Production is focus area of interest.    
Establish one national facility for automated / autonomous experimentation 
in synthesis, including "cloud lab" model to enable broad access, especially 
to universities from under-resourced communities.  Applications of this 
facility could span Human Health and Welfare, Energy, etc. 

  

Ceramics 
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I am clearly biased, but I think the priority should be given to Energy, Health 
and Food. It is not realistic to define matrix for economic competitiveness 
and national security :)  

Solid State and 
Materials Chemistry 

Invest in developing general purpose tools and methodologies to fabricate 
new materials and validate the predicted and desired material and device 
properties, for example: ALD, ALE, PVD, pulsed laser PVD, CVD, epi. Focus 
on new material synthesis, scaling and integration as opposed to new 
material identification and property prediction, which has advanced more 
rapidly recently. 
 
Curated Datasets: Creating standardized datasets can provide a foundation 
for developing and validating ML models in material science. Perform round 
robin experiments to provide error estimation, validate critical meta data, and 
confirm reproducibility. For example: standardized physical test structures 
and short-loop electrical test devices. 
 
Enhance Metrology: Advancements in real-time, in situ metrology are needed 
to provide the data required for accurate ML models and digital twins. 
 
Foster Collaboration: Collaboration between data scientists and domain 
experts is essential for eƯective augmentation of materials development 
using machine learning. Domain experts are needed to set strategy, define 
initial DOEs, limit parameter ranges, and down-select potential solutions for 
subsequent exploration and exploitation. Data scientists are needed to set 
machine learning strategies and determine the most appropriate machine 
learning algorithms. Create a ”tiger team” that specializes in human-machine 
collaboration using virtual environments and advanced algorithms and 
embed them in programs that entail development and deployment of new 
materials. For example, embedding the human-machine collaboration tiger 
team into the NGMM (next generation microelectronics manuf) 
heterogeneous integration program would likely enhance the probability of 
success while simultaneously honing human-machine collaboration 
methods and skills.  
 
Address IP and Data Sharing: Developing frameworks for data sharing while 
protecting intellectual property can facilitate collaborative research and 
development. 
 
Invest in Mechanistic Understanding: To the extent virtual environment 
creation for digital twins is hampered by lack of mechanistic understanding 
and/or unknown physical parameter values, a coordinated eƯort to develop 
mechanistic models and measure pertinent parameters is of paramount 
importance. Such models and data are needed to create useful digital twins 
and physics inspired machine learning algorithms. Utilize autonomous 
experimental design and execution to save time and money and minimize risk 
of human-induced error and variation. 
 
Leverage Digital Twins: Develop and utilize digital twins to accelerate 
materials development, reduce time and costs, and provide actionable 

Ceramics 

Electronic Materials 
Metallic 
Nanostructures 

Metals 
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insights for decision-making. Recognize that developing digital twins is a 
journey and that much value can be garnered from virtual environments that 
are not yet precisely predictive. The nascent NIST manufacturing institute 
focused on digital twins for semi manufacturing (front-end and adv pkg) 
provides a unique opportunity for transferring methodologies and techniques 
to new materials synthesis digital twins. 
 
Monitor LLM progress continuously to avoid surprises by systematically 
testing them like you test a student: Define standardized tests to enable 
consistent benchmarking. 

materials discovery that meets performance and emerging sustainability 
requirements 

Electronic Materials 

Megaton Synthesis of Carbon Nanotubes from Methane Pyrolysis 

Biomaterials 
Ceramics 
Electronic Materials 
Materials in/for 
Condensed Matter 
Physics 
Metallic 
Nanostructures 
Metals 
Photonic Materials 
Polymers 
Solid State and 
Materials Chemistry 

Metrics on the functionality of new materials 
Metrics on materials discovery in lab vs. in computer 

  

National Security to Secure Economic Competitiveness across Energy, 
Aerospace, Heath, and Defense to Support a Highly Innovative Economic 
Profitable Industries 

Ceramics 
Electronic Materials 
Materials in/for 
Condensed Matter 
Physics 
Metallic 
Nanostructures 
Metals 
Photonic Materials 
Solid State and 
Materials Chemistry 

Next Generation Semiconductor and Advanced Packaging Technologies for 
Economic Competitiveness and National Security 

  

Novel 'enabling' materials that can lead to step changes in many energy 
technologies that are plateaued for several decades (high temperature alloys, 
superconductors, magnetic materials, ...). 

  

-One major target should be the rate at which new materials are proposed 
and experimentally explored. This can include the synthesis and testing of key 
materials of interest (e.g. LK99), or the ingestion of new materials hypotheses 

Polymers 
Solid State and 
Materials Chemistry 
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to be explored more generally. 
-There are growing eƯorts across the research enterprise to construct 
something like a scientific large language model. Such a system will require 
vast experimental data that can constitute training data with associated rich 
metadata. From this perspective, the raw volume of experimental materials 
data is a crucial metric. 
Quantitative increases in FAIR realization measures for materials data: 
number of datasets FOUND, ACCESSED, INTEROPERATED, REUSED -- all 
increased by factors of 10 or more. 
Number of consumers of data from public materials data repositories 
increased by x10. 
Number of publications generated from autonomous laboratories increased 
by x100. 

  

Quantum materials should be a part of this list. 
Biomaterials 
Polymers 

Re: Water Security & Human Health—I think there is an opportunity to create 
low-cost SDLs ("frugal twins") to do electrochemical detection and 
remediation for heavy metals in water and soil, which could serve a dual role 
of advancing the challenge area and as a teaching tool.  
 
Specific targets for this could include: 
- Community access (how many citizen advocacy groups / citizen scientists 
have adopted). Measurable targets might include hits on Thingiverse, Tindie, 
etc...or just number of devices in the wild.  
- Measuring health impacts (although probably beyond the scope of this 
program, per se)  
- Measuring workforce development impacts (# of students exposed to these 
ideas in introductory classes, advanced classes, etc.).  A measurable target 
could be # of universities with specific capabilities in automation for science, 
etc.  There is an analogy to how the American Chemical Society says that 
ACS-certified programs must have certain instrumentation available, and 
ACS-certified bachelors degrees must have certain numbers of hours of 
practical experience with diƯerent methods.  A dream would be to have an 
analogous certification process and requirements of minimal skill levels.  
 
 
Re: Economic Competitiveness: 
 
Certainly industry can define this in many ways. As an educator, I would focus 
on workforce related aspects.  What is the demand (for specific skillsets, 
preparation, experiences) and are we meeting that demand?  A dashboard 
and long-range projects would be helpful in the slow process of creating 
academic programs.  Having this as part of a national plan would help justify 
it to administrators. 

Other 

Reduce cost of manufacturing by 10x and increase speed of manufacturing 
10x to start.   

  

Electronic Materials 
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sustainability, critically lean manufacturing, national security, supply chain 
resilience, energy production and eƯiciency 

Materials in/for 
Condensed Matter 
Physics 
Metallic 
Nanostructures 
Metals 
Photonic Materials 

Target:  (1) Reduce the time to develop and deploy a new qualified AM metal 
alloy in a high-consequence product to less than 6 months.  (2) Demonstrate 
a "co-design" workflow that enables the simultaneous holistic optimization 
of i) product geometry, ii) manufacturing method, and iii) material.   

Metallic 
Nanostructures 

Metals 

Water Security 
National Security 
Food Security 

Ceramics 
Electronic Materials 
Materials in/for 
Condensed Matter 
Physics 
Metallic 
Nanostructures 
Metals 
Photonic Materials 
Solid State and 
Materials Chemistry 

Water: Improve water purification eƯiciency to remove over 99% of 
microplastics, heavy metals, and other contaminants. 
 
Human Health and Welfare: Develop automated approaches to design and 
synthesize new drugs to prevent future pandemics. 
 
Energy: Develop new energy storage devices with approximately a 25% 
increase in capacity compared to current devices, ensuring 
commercialization potential. 
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E. Abbreviation List 
2DCC 2D Crystal Consortium - An NSF Materials Innovation Platform 
3D 3-dimensional 
4D 4-dimensional 
ACS American Chemical Society 
ACT3 Air Force Research Laboratory Autonomy Capability Team 
AE Autonomous Experimentation 
AFM Atomic Force Microscopy 
AI Artificial Intelligence 
ALD Atomic Layer Deposition 
AM Additive Manufacturing 
AMANDA Autonomous Materials and Device Application Platform (www.amanda-

platform.com) 
AMDD Accelerated Materials Design and Discovery 
AMII Autonomous Materials Innovation Infrastructure 
API Application Programming Interface 
ARES Air Force Research Laboratory Autonomous Research System 
ARM Autonomous Robotics Metallurgist 
ASTM American Society for Testing and Materials 
ASTRAL Automated powder synthesis with AI-assisted computational materials 

design 
AT SCALE Adaptive Tunability for Synthesis and Control via Autonomous Learning on 

Edge 
BioPACIFIC MIP BioPolymers, Automated Cellular Infrastructure, Flow, and Integrated 

Chemistry Materials Innovation Platform 
BIRDSHOT Batch-wise Improvement in Reduced Materials Design Space using a 

Holistic Optimization Technique 
CAMINO Center for Advanced Manufacturing Innovation 
CHIMAD Center for Hierarchical Materials Design 
CLI Command-Line Interface 
CRADAS Cooperative Research and Development Agreements 
CRIPT Community Resource for Innovation in Polymer Technology 
CVD Chemical Vapor Deposition 
DFT Density Functional Theory 
DMREF Designing Materials to Revolutionize and Engineer our Futures 
DREAM Data-driven Reinvigorated Advanced Membrane Discovery Platform 
EELS Electron Energy Loss Spectroscopy 
ELN Electronic Lab Notebooks 
EM Electron Microscopy 
EU European Union 
FAIR Findable, Accessible, Interoperable, Reusable 
FSM Functional Soft Matter 
FTO Freedom To Operate 
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GEMD Graphical Expression of Materials Data 
Georgia AIM Georgia Artificial Intelligence in Manufacturing 
GIWAXS Grazing Incidence Wide Angle Xray Scattering 
GPT Generative Pre-trained Performer 
GUI Graphical User Interface 
HAMMER Hybrid Autonomous Manufacturing, Moving from Evolution to Revolution 
HEA High-Entropy Alloy 
HfCN Hafnium Carbonitride 
HPC High Performance Computing 
HTMDEC High-Throughput Materials Discovery for Extreme Conditions 
HT-READ High-Throughput Rapid Experimental Alloy Development 
IACMI Institute for Advanced Composites Manufacturing Innovation 
ICME Integrated Computational Materials Engineering 
IEEE Institute of Electrical and Electronics Engineers 
IMQCAM Institute for Model-Based Qualification & Certification of Additive 

Manufacturing 
INTERSECT Interconnected Science Ecosystem 
IP Intellectual Property 
ISO International Organization for Standardization 
IT Information Technology 
IWG Interagency Working Group 
LBL Lawrence Berkeley Laboratory 
LC Liquid Chromatography 
LCMS Liquid Chromatography-Mass Spectrometry 
LDRD Laboratory Directed Research and Development 
LIMS Laboratory Information Management System 
LK99 Lee-Kim 1999 research 
LLM Large Language Model 
MAP Materials Acceleration Platform 
MBE Molecular Beam Epitaxy 
MCP Materials Characterization and Processing Center 
MDRI Materials Discovery and Research Institute 
MFS Molecular Foundations for Sustainability 
MGI Materials Genome Initiative 
MI Materials Intelligence 
MIDA N-methylimminodiacetic acid 
MII Materials Innovation Infrastructure 
MIP Materials Innovation Platform 
ML Machine Learning 
MPEA Multi-Principal Element Alloy 
MRL Manufacturing Readiness Level 
MRSEC Materials Research Science and Engineering Center 
MS Mass Spectrometry 



 

168 
 

MSI Minority Serving Institutions 
MURI Multidisciplinary University Research Initiative 
NaFI National Facilities and Instrumentation 
NCSA National Center for Supercomputing Applications 
NDA Non-Disclosure Agreement  
NGMM Next-Generation Microelectronics Manufacturing 
NREL National Renewable Energy Laboratory 
NRT NSF Research Traineeship Program 
OQMD The Open Quantum Materials Database 
OS Operating System 
P2P Peer-to-Peer 
PARADIM Platform for the Accelerated Realization, Analysis, and Discovery of 

Interface Materials 
PDFF Pair Distribution Function FITting Program 
PDFitc PDF in the Cloud 
PFAS Per- and Polyfluoroalkyl Substances 
PGE Platinum Group Elements 
PI Principal Investigator 
PLC Programmable Logic Controller 
PLD Pulsed Laser Deposition 
PV Photovoltaic 
PVD Physical Vapor Deposition 
PXRD Powder X-Ray DiƯraction 
QD Quantum Dot 
RAPID Rapid Advancement in Process Intensification Deployment 
RHEED Reflection High-Energy Electron DiƯraction 
RIDE Rational Integrated Design of Energetics 
RT Room Temperature 
SAXS Small-Angle X-Ray Scattering 
SD2 Synergistic Discovery and Design 
SDK Software Development Kit 
SDL Self-Driving Laboratory 
SEM Scanning Electron Microscopy 
SME Subject Matter Expert 
SNL Sandia National Laboratories 
SPEED Sustainable Polymers Enabled by Emerging Data Analytics 
STEM Science, Technology, Engineering, and Mathematics 
STRI Space Technology Research Institutes 
SURGE Structure Uniquely Resolved to Guarantee Endurance 
T-BRSC Tri-Service Biotechnology for a Resilient Supply Chain (T-BRSC) program 
TIDA Tetramethyl-N-methyliminodiacetic acid 
TIP Technology, Innovation, and Partnership Directorate (NSF) 
TRI Toyota Research Institute 
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TRIXS Toyota Research Institute X-ray Spectroscopy 
TRL Technology Readiness Level 
ULRI Underwriter Laboratories Research Institutes 
ULTIMATE Ultrahigh Temperature Impervious Materials Advancing Turbine EƯiciency 
URL Uniform Resource Locator 
VIPERLAB Fully Connected Virtual and Physical Perovskite Photovoltaic LAB 
WH White House 
XAS X-ray Absorption Spectroscopy 
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